import math import numpy as np from scipy.spatial.transform import Rotation as R def create_perspective_matrix(aspect_ratio): kDegreesToRadians = np.pi / 180. near = 1 far = 10000 perspective_matrix = np.zeros(16, dtype=np.float32) # Standard perspective projection matrix calculations. f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.) denom = 1.0 / (near - far) perspective_matrix[0] = f / aspect_ratio perspective_matrix[5] = f perspective_matrix[10] = (near + far) * denom perspective_matrix[11] = -1. perspective_matrix[14] = 1. * far * near * denom # If the environment's origin point location is in the top left corner, # then skip additional flip along Y-axis is required to render correctly. perspective_matrix[5] *= -1. return perspective_matrix def project_points(points_3d, transformation_matrix, pose_vectors, image_shape): P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T L, N, _ = points_3d.shape projected_points = np.zeros((L, N, 2)) for i in range(L): points_3d_frame = points_3d[i] ones = np.ones((points_3d_frame.shape[0], 1)) points_3d_homogeneous = np.hstack([points_3d_frame, ones]) transformed_points = points_3d_homogeneous @ (transformation_matrix @ euler_and_translation_to_matrix(pose_vectors[i][:3], pose_vectors[i][3:])).T @ P projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] projected_points[i] = projected_points_frame return projected_points def project_points_with_trans(points_3d, transformation_matrix, image_shape): P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T L, N, _ = points_3d.shape projected_points = np.zeros((L, N, 2)) for i in range(L): points_3d_frame = points_3d[i] ones = np.ones((points_3d_frame.shape[0], 1)) points_3d_homogeneous = np.hstack([points_3d_frame, ones]) transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] projected_points[i] = projected_points_frame return projected_points def euler_and_translation_to_matrix(euler_angles, translation_vector): rotation = R.from_euler('xyz', euler_angles, degrees=True) rotation_matrix = rotation.as_matrix() matrix = np.eye(4) matrix[:3, :3] = rotation_matrix matrix[:3, 3] = translation_vector return matrix def matrix_to_euler_and_translation(matrix): rotation_matrix = matrix[:3, :3] translation_vector = matrix[:3, 3] rotation = R.from_matrix(rotation_matrix) euler_angles = rotation.as_euler('xyz', degrees=True) return euler_angles, translation_vector def smooth_pose_seq(pose_seq, window_size=5): smoothed_pose_seq = np.zeros_like(pose_seq) for i in range(len(pose_seq)): start = max(0, i - window_size // 2) end = min(len(pose_seq), i + window_size // 2 + 1) smoothed_pose_seq[i] = np.mean(pose_seq[start:end], axis=0) return smoothed_pose_seq