|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
class ConvNormRelu(nn.Module):
|
|
def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False,
|
|
kernel_size=None, stride=None, padding=None, norm='BN', leaky=False):
|
|
super().__init__()
|
|
if kernel_size is None:
|
|
if downsample:
|
|
kernel_size, stride, padding = 4, 2, 1
|
|
else:
|
|
kernel_size, stride, padding = 3, 1, 1
|
|
|
|
if conv_type == '2d':
|
|
self.conv = nn.Conv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
bias=False,
|
|
)
|
|
if norm == 'BN':
|
|
self.norm = nn.BatchNorm2d(out_channels)
|
|
elif norm == 'IN':
|
|
self.norm = nn.InstanceNorm2d(out_channels)
|
|
else:
|
|
raise NotImplementedError
|
|
elif conv_type == '1d':
|
|
self.conv = nn.Conv1d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
bias=False,
|
|
)
|
|
if norm == 'BN':
|
|
self.norm = nn.BatchNorm1d(out_channels)
|
|
elif norm == 'IN':
|
|
self.norm = nn.InstanceNorm1d(out_channels)
|
|
else:
|
|
raise NotImplementedError
|
|
nn.init.kaiming_normal_(self.conv.weight)
|
|
|
|
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
if isinstance(self.norm, nn.InstanceNorm1d):
|
|
x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1))
|
|
else:
|
|
x = self.norm(x)
|
|
x = self.act(x)
|
|
return x
|
|
|
|
|
|
class PoseSequenceDiscriminator(nn.Module):
|
|
def __init__(self, cfg):
|
|
super().__init__()
|
|
self.cfg = cfg
|
|
leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU
|
|
|
|
self.seq = nn.Sequential(
|
|
ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky),
|
|
ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky),
|
|
ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky),
|
|
nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True)
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2)
|
|
x = self.seq(x)
|
|
x = x.squeeze(1)
|
|
return x |