--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: distilbert-base-cased model-index: - name: Transformers_Project results: [] --- # This is prediction for Suicide and Non-Suicide: Label-1 is Suicide and Label-0 is Non-Suicide. # Transformers_Project This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1389 - Accuracy: 0.9672 - F1: 0.9672 - Precision: 0.9676 - Recall: 0.9667 - Zero One Loss: 0.0328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------:| | 0.2495 | 1.0 | 875 | 0.1397 | 0.9552 | 0.9563 | 0.9320 | 0.982 | 0.0448 | | 0.0865 | 2.0 | 1750 | 0.1163 | 0.9692 | 0.9692 | 0.9696 | 0.9687 | 0.0308 | | 0.0344 | 3.0 | 2625 | 0.1389 | 0.9672 | 0.9672 | 0.9676 | 0.9667 | 0.0328 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2