--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: irony_en_United_Kingdom results: [] --- # irony_en_United_Kingdom This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on part of the [EPIC](https://huggingface.co/datasets/Multilingual-Perspectivist-NLU/EPIC) dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Accuracy: 0.6833 - Precision: 0.4764 - Recall: 0.7339 - F1: 0.5778 ## Model description The model is trained considering the annotation of annotators from the United Kingdom only. The annotations from these annotators are aggregated using majority voting and then used to train the model. ## Training and evaluation data The model has been trained on the annotation from annotators from the United Kingdom from the [EPIC](https://huggingface.co/datasets/Multilingual-Perspectivist-NLU/EPIC) dataset. The data has been randomly split in a train and a validation set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - early stopping (patience: 2) ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0044 | 1.0 | 79 | 0.0042 | 0.5310 | 0.3612 | 0.7661 | 0.4910 | | 0.0043 | 2.0 | 158 | 0.0040 | 0.6595 | 0.4417 | 0.5806 | 0.5017 | | 0.0039 | 3.0 | 237 | 0.0034 | 0.6310 | 0.4188 | 0.6452 | 0.5079 | | 0.0033 | 4.0 | 316 | 0.0027 | 0.7286 | 0.5352 | 0.6129 | 0.5714 | | 0.0022 | 5.0 | 395 | 0.0024 | 0.5833 | 0.4066 | 0.8952 | 0.5592 | | 0.0015 | 6.0 | 474 | 0.0022 | 0.7357 | 0.5474 | 0.6048 | 0.5747 | | 0.001 | 7.0 | 553 | 0.0022 | 0.7262 | 0.5302 | 0.6371 | 0.5788 | | 0.0005 | 8.0 | 632 | 0.0023 | 0.6833 | 0.4764 | 0.7339 | 0.5778 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1