Muennighoff's picture
Update README.md
54862a5
|
raw
history blame
95.6 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: SGPT-125M-weightedmean-nli-bitfit
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
        metrics:
          - type: accuracy
            value: 65.88059701492537
          - type: ap
            value: 28.685493163579785
          - type: f1
            value: 59.79951005816335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
        metrics:
          - type: accuracy
            value: 59.07922912205568
          - type: ap
            value: 73.91887421019034
          - type: f1
            value: 56.6316368658711
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
        metrics:
          - type: accuracy
            value: 64.91754122938531
          - type: ap
            value: 16.360681214864226
          - type: f1
            value: 53.126592061523766
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
        metrics:
          - type: accuracy
            value: 56.423982869378996
          - type: ap
            value: 12.143003571907899
          - type: f1
            value: 45.76363777987471
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
        metrics:
          - type: accuracy
            value: 74.938225
          - type: ap
            value: 69.58187110320567
          - type: f1
            value: 74.72744058439321
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
        metrics:
          - type: accuracy
            value: 35.098
          - type: f1
            value: 34.73265651435726
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
        metrics:
          - type: accuracy
            value: 24.516
          - type: f1
            value: 24.21748200448397
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
        metrics:
          - type: accuracy
            value: 29.097999999999995
          - type: f1
            value: 28.620040162757093
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
        metrics:
          - type: accuracy
            value: 27.395999999999997
          - type: f1
            value: 27.146888644986284
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
        metrics:
          - type: accuracy
            value: 21.724
          - type: f1
            value: 21.37230564276654
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
        metrics:
          - type: accuracy
            value: 23.976
          - type: f1
            value: 23.741137981755482
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
        metrics:
          - type: map_at_1
            value: 13.442000000000002
          - type: map_at_10
            value: 24.275
          - type: map_at_100
            value: 25.588
          - type: map_at_1000
            value: 25.659
          - type: map_at_3
            value: 20.092
          - type: map_at_5
            value: 22.439999999999998
          - type: ndcg_at_1
            value: 13.442000000000002
          - type: ndcg_at_10
            value: 31.04
          - type: ndcg_at_100
            value: 37.529
          - type: ndcg_at_1000
            value: 39.348
          - type: ndcg_at_3
            value: 22.342000000000002
          - type: ndcg_at_5
            value: 26.595999999999997
          - type: precision_at_1
            value: 13.442000000000002
          - type: precision_at_10
            value: 5.299
          - type: precision_at_100
            value: 0.836
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 9.625
          - type: precision_at_5
            value: 7.852
          - type: recall_at_1
            value: 13.442000000000002
          - type: recall_at_10
            value: 52.986999999999995
          - type: recall_at_100
            value: 83.64200000000001
          - type: recall_at_1000
            value: 97.795
          - type: recall_at_3
            value: 28.876
          - type: recall_at_5
            value: 39.26
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
        metrics:
          - type: v_measure
            value: 34.742482477870766
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
        metrics:
          - type: v_measure
            value: 24.67870651472156
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
        metrics:
          - type: map
            value: 52.63439984994702
          - type: mrr
            value: 65.75704612408214
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
        metrics:
          - type: cos_sim_pearson
            value: 72.78000135012542
          - type: cos_sim_spearman
            value: 70.92812216947605
          - type: euclidean_pearson
            value: 77.1169214949292
          - type: euclidean_spearman
            value: 77.10175681583313
          - type: manhattan_pearson
            value: 76.84527031837595
          - type: manhattan_spearman
            value: 77.0704308008438
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
        metrics:
          - type: accuracy
            value: 1.0960334029227559
          - type: f1
            value: 1.0925539318023658
          - type: precision
            value: 1.0908141962421711
          - type: recall
            value: 1.0960334029227559
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
        metrics:
          - type: accuracy
            value: 0.02201188641866608
          - type: f1
            value: 0.02201188641866608
          - type: precision
            value: 0.02201188641866608
          - type: recall
            value: 0.02201188641866608
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
        metrics:
          - type: accuracy
            value: 0
          - type: f1
            value: 0
          - type: precision
            value: 0
          - type: recall
            value: 0
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
        metrics:
          - type: accuracy
            value: 0
          - type: f1
            value: 0
          - type: precision
            value: 0
          - type: recall
            value: 0
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
        metrics:
          - type: accuracy
            value: 74.67857142857142
          - type: f1
            value: 74.61743413995573
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
        metrics:
          - type: v_measure
            value: 28.93427045246491
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
        metrics:
          - type: v_measure
            value: 23.080939123955474
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
        metrics:
          - type: map_at_1
            value: 18.221999999999998
          - type: map_at_10
            value: 24.506
          - type: map_at_100
            value: 25.611
          - type: map_at_1000
            value: 25.758
          - type: map_at_3
            value: 22.264999999999997
          - type: map_at_5
            value: 23.698
          - type: ndcg_at_1
            value: 23.033
          - type: ndcg_at_10
            value: 28.719
          - type: ndcg_at_100
            value: 33.748
          - type: ndcg_at_1000
            value: 37.056
          - type: ndcg_at_3
            value: 25.240000000000002
          - type: ndcg_at_5
            value: 27.12
          - type: precision_at_1
            value: 23.033
          - type: precision_at_10
            value: 5.408
          - type: precision_at_100
            value: 1.004
          - type: precision_at_1000
            value: 0.158
          - type: precision_at_3
            value: 11.874
          - type: precision_at_5
            value: 8.927
          - type: recall_at_1
            value: 18.221999999999998
          - type: recall_at_10
            value: 36.355
          - type: recall_at_100
            value: 58.724
          - type: recall_at_1000
            value: 81.33500000000001
          - type: recall_at_3
            value: 26.334000000000003
          - type: recall_at_5
            value: 31.4
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
        metrics:
          - type: map_at_1
            value: 12.058
          - type: map_at_10
            value: 16.051000000000002
          - type: map_at_100
            value: 16.772000000000002
          - type: map_at_1000
            value: 16.871
          - type: map_at_3
            value: 14.78
          - type: map_at_5
            value: 15.5
          - type: ndcg_at_1
            value: 15.35
          - type: ndcg_at_10
            value: 18.804000000000002
          - type: ndcg_at_100
            value: 22.346
          - type: ndcg_at_1000
            value: 25.007
          - type: ndcg_at_3
            value: 16.768
          - type: ndcg_at_5
            value: 17.692
          - type: precision_at_1
            value: 15.35
          - type: precision_at_10
            value: 3.51
          - type: precision_at_100
            value: 0.664
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 7.983
          - type: precision_at_5
            value: 5.656
          - type: recall_at_1
            value: 12.058
          - type: recall_at_10
            value: 23.644000000000002
          - type: recall_at_100
            value: 39.76
          - type: recall_at_1000
            value: 58.56
          - type: recall_at_3
            value: 17.541999999999998
          - type: recall_at_5
            value: 20.232
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
        metrics:
          - type: map_at_1
            value: 21.183
          - type: map_at_10
            value: 28.9
          - type: map_at_100
            value: 29.858
          - type: map_at_1000
            value: 29.953999999999997
          - type: map_at_3
            value: 26.58
          - type: map_at_5
            value: 27.912
          - type: ndcg_at_1
            value: 24.765
          - type: ndcg_at_10
            value: 33.339999999999996
          - type: ndcg_at_100
            value: 37.997
          - type: ndcg_at_1000
            value: 40.416000000000004
          - type: ndcg_at_3
            value: 29.044999999999998
          - type: ndcg_at_5
            value: 31.121
          - type: precision_at_1
            value: 24.765
          - type: precision_at_10
            value: 5.599
          - type: precision_at_100
            value: 0.8699999999999999
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 13.270999999999999
          - type: precision_at_5
            value: 9.367
          - type: recall_at_1
            value: 21.183
          - type: recall_at_10
            value: 43.875
          - type: recall_at_100
            value: 65.005
          - type: recall_at_1000
            value: 83.017
          - type: recall_at_3
            value: 32.232
          - type: recall_at_5
            value: 37.308
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
        metrics:
          - type: map_at_1
            value: 11.350999999999999
          - type: map_at_10
            value: 14.953
          - type: map_at_100
            value: 15.623000000000001
          - type: map_at_1000
            value: 15.716
          - type: map_at_3
            value: 13.603000000000002
          - type: map_at_5
            value: 14.343
          - type: ndcg_at_1
            value: 12.429
          - type: ndcg_at_10
            value: 17.319000000000003
          - type: ndcg_at_100
            value: 20.990000000000002
          - type: ndcg_at_1000
            value: 23.899
          - type: ndcg_at_3
            value: 14.605
          - type: ndcg_at_5
            value: 15.89
          - type: precision_at_1
            value: 12.429
          - type: precision_at_10
            value: 2.701
          - type: precision_at_100
            value: 0.48700000000000004
          - type: precision_at_1000
            value: 0.078
          - type: precision_at_3
            value: 6.026
          - type: precision_at_5
            value: 4.3839999999999995
          - type: recall_at_1
            value: 11.350999999999999
          - type: recall_at_10
            value: 23.536
          - type: recall_at_100
            value: 40.942
          - type: recall_at_1000
            value: 64.05
          - type: recall_at_3
            value: 16.195
          - type: recall_at_5
            value: 19.264
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
        metrics:
          - type: map_at_1
            value: 8.08
          - type: map_at_10
            value: 11.691
          - type: map_at_100
            value: 12.312
          - type: map_at_1000
            value: 12.439
          - type: map_at_3
            value: 10.344000000000001
          - type: map_at_5
            value: 10.996
          - type: ndcg_at_1
            value: 10.697
          - type: ndcg_at_10
            value: 14.48
          - type: ndcg_at_100
            value: 18.160999999999998
          - type: ndcg_at_1000
            value: 21.886
          - type: ndcg_at_3
            value: 11.872
          - type: ndcg_at_5
            value: 12.834000000000001
          - type: precision_at_1
            value: 10.697
          - type: precision_at_10
            value: 2.811
          - type: precision_at_100
            value: 0.551
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 5.804
          - type: precision_at_5
            value: 4.154
          - type: recall_at_1
            value: 8.08
          - type: recall_at_10
            value: 20.235
          - type: recall_at_100
            value: 37.525999999999996
          - type: recall_at_1000
            value: 65.106
          - type: recall_at_3
            value: 12.803999999999998
          - type: recall_at_5
            value: 15.498999999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
        metrics:
          - type: map_at_1
            value: 13.908999999999999
          - type: map_at_10
            value: 19.256
          - type: map_at_100
            value: 20.286
          - type: map_at_1000
            value: 20.429
          - type: map_at_3
            value: 17.399
          - type: map_at_5
            value: 18.398999999999997
          - type: ndcg_at_1
            value: 17.421
          - type: ndcg_at_10
            value: 23.105999999999998
          - type: ndcg_at_100
            value: 28.128999999999998
          - type: ndcg_at_1000
            value: 31.480999999999998
          - type: ndcg_at_3
            value: 19.789
          - type: ndcg_at_5
            value: 21.237000000000002
          - type: precision_at_1
            value: 17.421
          - type: precision_at_10
            value: 4.331
          - type: precision_at_100
            value: 0.839
          - type: precision_at_1000
            value: 0.131
          - type: precision_at_3
            value: 9.4
          - type: precision_at_5
            value: 6.776
          - type: recall_at_1
            value: 13.908999999999999
          - type: recall_at_10
            value: 31.086999999999996
          - type: recall_at_100
            value: 52.946000000000005
          - type: recall_at_1000
            value: 76.546
          - type: recall_at_3
            value: 21.351
          - type: recall_at_5
            value: 25.264999999999997
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
        metrics:
          - type: map_at_1
            value: 12.598
          - type: map_at_10
            value: 17.304
          - type: map_at_100
            value: 18.209
          - type: map_at_1000
            value: 18.328
          - type: map_at_3
            value: 15.784
          - type: map_at_5
            value: 16.669999999999998
          - type: ndcg_at_1
            value: 15.867999999999999
          - type: ndcg_at_10
            value: 20.623
          - type: ndcg_at_100
            value: 25.093
          - type: ndcg_at_1000
            value: 28.498
          - type: ndcg_at_3
            value: 17.912
          - type: ndcg_at_5
            value: 19.198
          - type: precision_at_1
            value: 15.867999999999999
          - type: precision_at_10
            value: 3.7670000000000003
          - type: precision_at_100
            value: 0.716
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 8.638
          - type: precision_at_5
            value: 6.21
          - type: recall_at_1
            value: 12.598
          - type: recall_at_10
            value: 27.144000000000002
          - type: recall_at_100
            value: 46.817
          - type: recall_at_1000
            value: 71.86099999999999
          - type: recall_at_3
            value: 19.231
          - type: recall_at_5
            value: 22.716
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
        metrics:
          - type: map_at_1
            value: 12.738416666666666
          - type: map_at_10
            value: 17.235916666666668
          - type: map_at_100
            value: 18.063333333333333
          - type: map_at_1000
            value: 18.18433333333333
          - type: map_at_3
            value: 15.74775
          - type: map_at_5
            value: 16.57825
          - type: ndcg_at_1
            value: 15.487416666666665
          - type: ndcg_at_10
            value: 20.290166666666668
          - type: ndcg_at_100
            value: 24.41291666666666
          - type: ndcg_at_1000
            value: 27.586333333333336
          - type: ndcg_at_3
            value: 17.622083333333332
          - type: ndcg_at_5
            value: 18.859916666666667
          - type: precision_at_1
            value: 15.487416666666665
          - type: precision_at_10
            value: 3.6226666666666665
          - type: precision_at_100
            value: 0.6820833333333334
          - type: precision_at_1000
            value: 0.11216666666666666
          - type: precision_at_3
            value: 8.163749999999999
          - type: precision_at_5
            value: 5.865416666666667
          - type: recall_at_1
            value: 12.738416666666666
          - type: recall_at_10
            value: 26.599416666666663
          - type: recall_at_100
            value: 45.41258333333334
          - type: recall_at_1000
            value: 68.7565
          - type: recall_at_3
            value: 19.008166666666668
          - type: recall_at_5
            value: 22.24991666666667
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
        metrics:
          - type: map_at_1
            value: 12.307
          - type: map_at_10
            value: 15.440000000000001
          - type: map_at_100
            value: 16.033
          - type: map_at_1000
            value: 16.14
          - type: map_at_3
            value: 14.393
          - type: map_at_5
            value: 14.856
          - type: ndcg_at_1
            value: 14.571000000000002
          - type: ndcg_at_10
            value: 17.685000000000002
          - type: ndcg_at_100
            value: 20.882
          - type: ndcg_at_1000
            value: 23.888
          - type: ndcg_at_3
            value: 15.739
          - type: ndcg_at_5
            value: 16.391
          - type: precision_at_1
            value: 14.571000000000002
          - type: precision_at_10
            value: 2.883
          - type: precision_at_100
            value: 0.49100000000000005
          - type: precision_at_1000
            value: 0.08
          - type: precision_at_3
            value: 7.0040000000000004
          - type: precision_at_5
            value: 4.693
          - type: recall_at_1
            value: 12.307
          - type: recall_at_10
            value: 22.566
          - type: recall_at_100
            value: 37.469
          - type: recall_at_1000
            value: 60.550000000000004
          - type: recall_at_3
            value: 16.742
          - type: recall_at_5
            value: 18.634
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
        metrics:
          - type: map_at_1
            value: 6.496
          - type: map_at_10
            value: 9.243
          - type: map_at_100
            value: 9.841
          - type: map_at_1000
            value: 9.946000000000002
          - type: map_at_3
            value: 8.395
          - type: map_at_5
            value: 8.872
          - type: ndcg_at_1
            value: 8.224
          - type: ndcg_at_10
            value: 11.24
          - type: ndcg_at_100
            value: 14.524999999999999
          - type: ndcg_at_1000
            value: 17.686
          - type: ndcg_at_3
            value: 9.617
          - type: ndcg_at_5
            value: 10.37
          - type: precision_at_1
            value: 8.224
          - type: precision_at_10
            value: 2.0820000000000003
          - type: precision_at_100
            value: 0.443
          - type: precision_at_1000
            value: 0.08499999999999999
          - type: precision_at_3
            value: 4.623
          - type: precision_at_5
            value: 3.331
          - type: recall_at_1
            value: 6.496
          - type: recall_at_10
            value: 15.310000000000002
          - type: recall_at_100
            value: 30.680000000000003
          - type: recall_at_1000
            value: 54.335
          - type: recall_at_3
            value: 10.691
          - type: recall_at_5
            value: 12.687999999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
        metrics:
          - type: map_at_1
            value: 13.843
          - type: map_at_10
            value: 17.496000000000002
          - type: map_at_100
            value: 18.304000000000002
          - type: map_at_1000
            value: 18.426000000000002
          - type: map_at_3
            value: 16.225
          - type: map_at_5
            value: 16.830000000000002
          - type: ndcg_at_1
            value: 16.698
          - type: ndcg_at_10
            value: 20.301
          - type: ndcg_at_100
            value: 24.523
          - type: ndcg_at_1000
            value: 27.784
          - type: ndcg_at_3
            value: 17.822
          - type: ndcg_at_5
            value: 18.794
          - type: precision_at_1
            value: 16.698
          - type: precision_at_10
            value: 3.3579999999999997
          - type: precision_at_100
            value: 0.618
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 7.898
          - type: precision_at_5
            value: 5.428999999999999
          - type: recall_at_1
            value: 13.843
          - type: recall_at_10
            value: 25.887999999999998
          - type: recall_at_100
            value: 45.028
          - type: recall_at_1000
            value: 68.991
          - type: recall_at_3
            value: 18.851000000000003
          - type: recall_at_5
            value: 21.462
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
        metrics:
          - type: map_at_1
            value: 13.757
          - type: map_at_10
            value: 19.27
          - type: map_at_100
            value: 20.461
          - type: map_at_1000
            value: 20.641000000000002
          - type: map_at_3
            value: 17.865000000000002
          - type: map_at_5
            value: 18.618000000000002
          - type: ndcg_at_1
            value: 16.996
          - type: ndcg_at_10
            value: 22.774
          - type: ndcg_at_100
            value: 27.675
          - type: ndcg_at_1000
            value: 31.145
          - type: ndcg_at_3
            value: 20.691000000000003
          - type: ndcg_at_5
            value: 21.741
          - type: precision_at_1
            value: 16.996
          - type: precision_at_10
            value: 4.545
          - type: precision_at_100
            value: 1.036
          - type: precision_at_1000
            value: 0.185
          - type: precision_at_3
            value: 10.145
          - type: precision_at_5
            value: 7.391
          - type: recall_at_1
            value: 13.757
          - type: recall_at_10
            value: 28.233999999999998
          - type: recall_at_100
            value: 51.05499999999999
          - type: recall_at_1000
            value: 75.35300000000001
          - type: recall_at_3
            value: 21.794
          - type: recall_at_5
            value: 24.614
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
        metrics:
          - type: map_at_1
            value: 9.057
          - type: map_at_10
            value: 12.720999999999998
          - type: map_at_100
            value: 13.450000000000001
          - type: map_at_1000
            value: 13.564000000000002
          - type: map_at_3
            value: 11.34
          - type: map_at_5
            value: 12.245000000000001
          - type: ndcg_at_1
            value: 9.797
          - type: ndcg_at_10
            value: 15.091
          - type: ndcg_at_100
            value: 18.886
          - type: ndcg_at_1000
            value: 22.29
          - type: ndcg_at_3
            value: 12.365
          - type: ndcg_at_5
            value: 13.931
          - type: precision_at_1
            value: 9.797
          - type: precision_at_10
            value: 2.477
          - type: precision_at_100
            value: 0.466
          - type: precision_at_1000
            value: 0.082
          - type: precision_at_3
            value: 5.299
          - type: precision_at_5
            value: 4.067
          - type: recall_at_1
            value: 9.057
          - type: recall_at_10
            value: 21.319
          - type: recall_at_100
            value: 38.999
          - type: recall_at_1000
            value: 65.374
          - type: recall_at_3
            value: 14.331
          - type: recall_at_5
            value: 17.916999999999998
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
        metrics:
          - type: map_at_1
            value: 3.714
          - type: map_at_10
            value: 6.926
          - type: map_at_100
            value: 7.879
          - type: map_at_1000
            value: 8.032
          - type: map_at_3
            value: 5.504
          - type: map_at_5
            value: 6.357
          - type: ndcg_at_1
            value: 8.86
          - type: ndcg_at_10
            value: 11.007
          - type: ndcg_at_100
            value: 16.154
          - type: ndcg_at_1000
            value: 19.668
          - type: ndcg_at_3
            value: 8.103
          - type: ndcg_at_5
            value: 9.456000000000001
          - type: precision_at_1
            value: 8.86
          - type: precision_at_10
            value: 3.7199999999999998
          - type: precision_at_100
            value: 0.9169999999999999
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 6.254
          - type: precision_at_5
            value: 5.380999999999999
          - type: recall_at_1
            value: 3.714
          - type: recall_at_10
            value: 14.382
          - type: recall_at_100
            value: 33.166000000000004
          - type: recall_at_1000
            value: 53.444
          - type: recall_at_3
            value: 7.523000000000001
          - type: recall_at_5
            value: 10.91
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
        metrics:
          - type: map_at_1
            value: 1.764
          - type: map_at_10
            value: 3.8600000000000003
          - type: map_at_100
            value: 5.457
          - type: map_at_1000
            value: 5.938000000000001
          - type: map_at_3
            value: 2.667
          - type: map_at_5
            value: 3.2199999999999998
          - type: ndcg_at_1
            value: 14.000000000000002
          - type: ndcg_at_10
            value: 10.868
          - type: ndcg_at_100
            value: 12.866
          - type: ndcg_at_1000
            value: 17.43
          - type: ndcg_at_3
            value: 11.943
          - type: ndcg_at_5
            value: 11.66
          - type: precision_at_1
            value: 19.25
          - type: precision_at_10
            value: 10.274999999999999
          - type: precision_at_100
            value: 3.527
          - type: precision_at_1000
            value: 0.9119999999999999
          - type: precision_at_3
            value: 14.917
          - type: precision_at_5
            value: 13.5
          - type: recall_at_1
            value: 1.764
          - type: recall_at_10
            value: 6.609
          - type: recall_at_100
            value: 17.616
          - type: recall_at_1000
            value: 33.085
          - type: recall_at_3
            value: 3.115
          - type: recall_at_5
            value: 4.605
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
        metrics:
          - type: accuracy
            value: 42.225
          - type: f1
            value: 37.563516542112104
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
        metrics:
          - type: map_at_1
            value: 11.497
          - type: map_at_10
            value: 15.744
          - type: map_at_100
            value: 16.3
          - type: map_at_1000
            value: 16.365
          - type: map_at_3
            value: 14.44
          - type: map_at_5
            value: 15.18
          - type: ndcg_at_1
            value: 12.346
          - type: ndcg_at_10
            value: 18.398999999999997
          - type: ndcg_at_100
            value: 21.399
          - type: ndcg_at_1000
            value: 23.442
          - type: ndcg_at_3
            value: 15.695
          - type: ndcg_at_5
            value: 17.027
          - type: precision_at_1
            value: 12.346
          - type: precision_at_10
            value: 2.798
          - type: precision_at_100
            value: 0.445
          - type: precision_at_1000
            value: 0.063
          - type: precision_at_3
            value: 6.586
          - type: precision_at_5
            value: 4.665
          - type: recall_at_1
            value: 11.497
          - type: recall_at_10
            value: 25.636
          - type: recall_at_100
            value: 39.894
          - type: recall_at_1000
            value: 56.181000000000004
          - type: recall_at_3
            value: 18.273
          - type: recall_at_5
            value: 21.474
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
        metrics:
          - type: map_at_1
            value: 3.637
          - type: map_at_10
            value: 6.084
          - type: map_at_100
            value: 6.9190000000000005
          - type: map_at_1000
            value: 7.1080000000000005
          - type: map_at_3
            value: 5.071
          - type: map_at_5
            value: 5.5649999999999995
          - type: ndcg_at_1
            value: 7.407
          - type: ndcg_at_10
            value: 8.94
          - type: ndcg_at_100
            value: 13.594999999999999
          - type: ndcg_at_1000
            value: 18.29
          - type: ndcg_at_3
            value: 7.393
          - type: ndcg_at_5
            value: 7.854
          - type: precision_at_1
            value: 7.407
          - type: precision_at_10
            value: 2.778
          - type: precision_at_100
            value: 0.75
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 5.144
          - type: precision_at_5
            value: 3.981
          - type: recall_at_1
            value: 3.637
          - type: recall_at_10
            value: 11.821
          - type: recall_at_100
            value: 30.18
          - type: recall_at_1000
            value: 60.207
          - type: recall_at_3
            value: 6.839
          - type: recall_at_5
            value: 8.649
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
        metrics:
          - type: map_at_1
            value: 9.676
          - type: map_at_10
            value: 13.350999999999999
          - type: map_at_100
            value: 13.919
          - type: map_at_1000
            value: 14.01
          - type: map_at_3
            value: 12.223
          - type: map_at_5
            value: 12.812000000000001
          - type: ndcg_at_1
            value: 19.352
          - type: ndcg_at_10
            value: 17.727
          - type: ndcg_at_100
            value: 20.837
          - type: ndcg_at_1000
            value: 23.412
          - type: ndcg_at_3
            value: 15.317
          - type: ndcg_at_5
            value: 16.436
          - type: precision_at_1
            value: 19.352
          - type: precision_at_10
            value: 3.993
          - type: precision_at_100
            value: 0.651
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 9.669
          - type: precision_at_5
            value: 6.69
          - type: recall_at_1
            value: 9.676
          - type: recall_at_10
            value: 19.966
          - type: recall_at_100
            value: 32.573
          - type: recall_at_1000
            value: 49.905
          - type: recall_at_3
            value: 14.504
          - type: recall_at_5
            value: 16.725
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
        metrics:
          - type: accuracy
            value: 62.895999999999994
          - type: ap
            value: 58.47769349850157
          - type: f1
            value: 62.67885149592086
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
        metrics:
          - type: map_at_1
            value: 2.88
          - type: map_at_10
            value: 4.914000000000001
          - type: map_at_100
            value: 5.459
          - type: map_at_1000
            value: 5.538
          - type: map_at_3
            value: 4.087
          - type: map_at_5
            value: 4.518
          - type: ndcg_at_1
            value: 2.937
          - type: ndcg_at_10
            value: 6.273
          - type: ndcg_at_100
            value: 9.426
          - type: ndcg_at_1000
            value: 12.033000000000001
          - type: ndcg_at_3
            value: 4.513
          - type: ndcg_at_5
            value: 5.292
          - type: precision_at_1
            value: 2.937
          - type: precision_at_10
            value: 1.089
          - type: precision_at_100
            value: 0.27699999999999997
          - type: precision_at_1000
            value: 0.051000000000000004
          - type: precision_at_3
            value: 1.9290000000000003
          - type: precision_at_5
            value: 1.547
          - type: recall_at_1
            value: 2.88
          - type: recall_at_10
            value: 10.578
          - type: recall_at_100
            value: 26.267000000000003
          - type: recall_at_1000
            value: 47.589999999999996
          - type: recall_at_3
            value: 5.673
          - type: recall_at_5
            value: 7.545
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
        metrics:
          - type: accuracy
            value: 81.51846785225717
          - type: f1
            value: 81.648869152345
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
        metrics:
          - type: accuracy
            value: 60.37475345167653
          - type: f1
            value: 58.452649375517026
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
        metrics:
          - type: accuracy
            value: 67.36824549699799
          - type: f1
            value: 65.35927434998516
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
        metrics:
          - type: accuracy
            value: 63.12871907297212
          - type: f1
            value: 61.37620329272278
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
        metrics:
          - type: accuracy
            value: 47.04553603442094
          - type: f1
            value: 46.20389912644561
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
        metrics:
          - type: accuracy
            value: 52.282097649186255
          - type: f1
            value: 50.75489206473579
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
        metrics:
          - type: accuracy
            value: 58.2421340629275
          - type: f1
            value: 40.11696046622642
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
        metrics:
          - type: accuracy
            value: 45.069033530571986
          - type: f1
            value: 30.468468273374967
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
        metrics:
          - type: accuracy
            value: 48.80920613742495
          - type: f1
            value: 32.65985375400447
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
        metrics:
          - type: accuracy
            value: 44.337613529595984
          - type: f1
            value: 29.302047435606436
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
        metrics:
          - type: accuracy
            value: 34.198637504481894
          - type: f1
            value: 22.063706032248408
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
        metrics:
          - type: accuracy
            value: 43.11030741410488
          - type: f1
            value: 26.92408933648504
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
        metrics:
          - type: accuracy
            value: 37.79421654337593
          - type: f1
            value: 36.81580701507746
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
        metrics:
          - type: accuracy
            value: 23.722259583053127
          - type: f1
            value: 23.235269695764273
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
        metrics:
          - type: accuracy
            value: 29.64021519838601
          - type: f1
            value: 28.273175327650137
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
        metrics:
          - type: accuracy
            value: 39.4754539340955
          - type: f1
            value: 39.25997361415121
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
        metrics:
          - type: accuracy
            value: 26.550100874243444
          - type: f1
            value: 25.607924873522975
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
        metrics:
          - type: accuracy
            value: 38.78278412911904
          - type: f1
            value: 37.64180582626517
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
        metrics:
          - type: accuracy
            value: 43.557498318762605
          - type: f1
            value: 41.35305173800667
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
        metrics:
          - type: accuracy
            value: 40.39340954942838
          - type: f1
            value: 38.33393219528934
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
        metrics:
          - type: accuracy
            value: 37.28648285137861
          - type: f1
            value: 36.64005906680284
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
        metrics:
          - type: accuracy
            value: 58.080026899798256
          - type: f1
            value: 56.49243881660991
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
        metrics:
          - type: accuracy
            value: 41.176866173503704
          - type: f1
            value: 40.66779962225799
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
        metrics:
          - type: accuracy
            value: 36.422326832548755
          - type: f1
            value: 34.6441738042885
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
        metrics:
          - type: accuracy
            value: 38.75588433086752
          - type: f1
            value: 37.26725894668694
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
        metrics:
          - type: accuracy
            value: 43.67182246133153
          - type: f1
            value: 42.351846624566605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
        metrics:
          - type: accuracy
            value: 31.980497646267658
          - type: f1
            value: 30.557928872809008
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
        metrics:
          - type: accuracy
            value: 28.039677202420982
          - type: f1
            value: 28.428418145508306
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
        metrics:
          - type: accuracy
            value: 38.13718897108272
          - type: f1
            value: 37.057406988196874
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
        metrics:
          - type: accuracy
            value: 26.05245460659045
          - type: f1
            value: 25.25483953344816
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
        metrics:
          - type: accuracy
            value: 41.156691324815064
          - type: f1
            value: 40.83715033247605
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
        metrics:
          - type: accuracy
            value: 38.62811028917284
          - type: f1
            value: 37.67691901246032
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
        metrics:
          - type: accuracy
            value: 44.0383322125084
          - type: f1
            value: 43.77259010877456
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
        metrics:
          - type: accuracy
            value: 46.20712844653666
          - type: f1
            value: 44.66632875940824
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
        metrics:
          - type: accuracy
            value: 37.60591795561533
          - type: f1
            value: 36.581071742378015
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
        metrics:
          - type: accuracy
            value: 24.47209145931405
          - type: f1
            value: 24.238209697895606
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
        metrics:
          - type: accuracy
            value: 26.23739071956961
          - type: f1
            value: 25.378783150845052
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
        metrics:
          - type: accuracy
            value: 17.831203765971754
          - type: f1
            value: 17.275078420466343
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
        metrics:
          - type: accuracy
            value: 37.266308002689975
          - type: f1
            value: 36.92473791708214
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
        metrics:
          - type: accuracy
            value: 40.93140551445864
          - type: f1
            value: 40.825227889641965
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
        metrics:
          - type: accuracy
            value: 17.88500336247478
          - type: f1
            value: 17.621569082971817
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
        metrics:
          - type: accuracy
            value: 32.975790181573636
          - type: f1
            value: 33.402014633349665
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
        metrics:
          - type: accuracy
            value: 40.91123066577001
          - type: f1
            value: 40.09538559124075
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
        metrics:
          - type: accuracy
            value: 17.834566240753194
          - type: f1
            value: 17.006381849454314
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
        metrics:
          - type: accuracy
            value: 39.47881640887693
          - type: f1
            value: 37.819934317839305
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
        metrics:
          - type: accuracy
            value: 41.76193678547412
          - type: f1
            value: 40.281991759509694
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
        metrics:
          - type: accuracy
            value: 42.61936785474109
          - type: f1
            value: 40.83673914649905
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
        metrics:
          - type: accuracy
            value: 44.54270342972427
          - type: f1
            value: 43.45243164278448
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
        metrics:
          - type: accuracy
            value: 39.96973772696705
          - type: f1
            value: 38.74209466530094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
        metrics:
          - type: accuracy
            value: 37.461331540013454
          - type: f1
            value: 36.91132021821187
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
        metrics:
          - type: accuracy
            value: 38.28850033624748
          - type: f1
            value: 37.37259394049676
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
        metrics:
          - type: accuracy
            value: 40.95494283792872
          - type: f1
            value: 39.767707902869084
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
        metrics:
          - type: accuracy
            value: 41.85272360457296
          - type: f1
            value: 40.42848260365438
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
        metrics:
          - type: accuracy
            value: 38.328850033624754
          - type: f1
            value: 36.90334596675622
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
        metrics:
          - type: accuracy
            value: 19.031607262945528
          - type: f1
            value: 18.66510306325761
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
        metrics:
          - type: accuracy
            value: 19.38466711499664
          - type: f1
            value: 19.186399376652535
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
        metrics:
          - type: accuracy
            value: 34.088769334229994
          - type: f1
            value: 34.20383086009429
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
        metrics:
          - type: accuracy
            value: 40.285810356422324
          - type: f1
            value: 39.361500249640414
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
        metrics:
          - type: accuracy
            value: 38.860121049092136
          - type: f1
            value: 37.81916859627235
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
        metrics:
          - type: accuracy
            value: 27.834566240753194
          - type: f1
            value: 26.898389386106487
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
        metrics:
          - type: accuracy
            value: 38.70544720914593
          - type: f1
            value: 38.280026442024415
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
        metrics:
          - type: accuracy
            value: 45.78009414929387
          - type: f1
            value: 44.21526778674136
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
        metrics:
          - type: accuracy
            value: 42.32010759919301
          - type: f1
            value: 42.25772977490916
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
        metrics:
          - type: accuracy
            value: 40.24546065904506
          - type: f1
            value: 38.79924050989544
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
        metrics:
          - type: accuracy
            value: 25.68930733019502
          - type: f1
            value: 25.488166279162712
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
        metrics:
          - type: accuracy
            value: 32.39744451916611
          - type: f1
            value: 31.863029579075775
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
        metrics:
          - type: accuracy
            value: 40.53127101546738
          - type: f1
            value: 39.707079033948936
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
        metrics:
          - type: accuracy
            value: 27.23268325487559
          - type: f1
            value: 26.443653281858793
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
        metrics:
          - type: accuracy
            value: 38.69872225958305
          - type: f1
            value: 36.55930387892567
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
        metrics:
          - type: accuracy
            value: 44.75453934095494
          - type: f1
            value: 42.87356484024154
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
        metrics:
          - type: accuracy
            value: 41.355077336919976
          - type: f1
            value: 39.82365179458047
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
        metrics:
          - type: accuracy
            value: 38.43981170141224
          - type: f1
            value: 37.02538368296387
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
        metrics:
          - type: accuracy
            value: 66.33826496301278
          - type: f1
            value: 65.89634765029932
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
        metrics:
          - type: accuracy
            value: 44.17955615332885
          - type: f1
            value: 43.10228811620319
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
        metrics:
          - type: accuracy
            value: 34.82851378614661
          - type: f1
            value: 33.95952441502803
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
        metrics:
          - type: accuracy
            value: 40.561533288500335
          - type: f1
            value: 38.04939011733627
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
        metrics:
          - type: accuracy
            value: 45.917955615332886
          - type: f1
            value: 44.65741971572902
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
        metrics:
          - type: accuracy
            value: 32.08473436449227
          - type: f1
            value: 29.53932929808133
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
        metrics:
          - type: accuracy
            value: 28.369199731002016
          - type: f1
            value: 27.52902837981212
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
        metrics:
          - type: accuracy
            value: 39.49226630800269
          - type: f1
            value: 37.3272340470504
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
        metrics:
          - type: accuracy
            value: 25.904505716207133
          - type: f1
            value: 24.547396574853444
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
        metrics:
          - type: accuracy
            value: 40.95830531271016
          - type: f1
            value: 40.177843177422226
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
        metrics:
          - type: accuracy
            value: 38.564223268325485
          - type: f1
            value: 37.35307758495248
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
        metrics:
          - type: accuracy
            value: 46.58708809683928
          - type: f1
            value: 44.103900526804985
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
        metrics:
          - type: accuracy
            value: 46.24747814391393
          - type: f1
            value: 45.4107101796664
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
        metrics:
          - type: accuracy
            value: 39.6570275722932
          - type: f1
            value: 38.82737576832412
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
        metrics:
          - type: accuracy
            value: 25.279085406859448
          - type: f1
            value: 23.662661686788493
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
        metrics:
          - type: accuracy
            value: 28.97108271687962
          - type: f1
            value: 27.195758324189246
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
        metrics:
          - type: accuracy
            value: 19.27370544720915
          - type: f1
            value: 18.694271924323637
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
        metrics:
          - type: accuracy
            value: 35.729657027572294
          - type: f1
            value: 34.38287006177308
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
        metrics:
          - type: accuracy
            value: 39.57296570275723
          - type: f1
            value: 38.074945140886925
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
        metrics:
          - type: accuracy
            value: 19.895763281775388
          - type: f1
            value: 20.00931364846829
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
        metrics:
          - type: accuracy
            value: 32.431069266980494
          - type: f1
            value: 31.395958664782576
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
        metrics:
          - type: accuracy
            value: 42.32347007397445
          - type: f1
            value: 40.81374026314701
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
        metrics:
          - type: accuracy
            value: 20.864156018829856
          - type: f1
            value: 20.409870408935436
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
        metrics:
          - type: accuracy
            value: 40.47074646940148
          - type: f1
            value: 39.19044149415904
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
        metrics:
          - type: accuracy
            value: 43.591123066577
          - type: f1
            value: 41.43420363064241
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
        metrics:
          - type: accuracy
            value: 41.876260928043045
          - type: f1
            value: 41.192117676667614
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
        metrics:
          - type: accuracy
            value: 46.30800268997983
          - type: f1
            value: 45.25536730126799
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
        metrics:
          - type: accuracy
            value: 42.525218560860786
          - type: f1
            value: 41.02418109296485
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
        metrics:
          - type: accuracy
            value: 35.94821788836584
          - type: f1
            value: 35.08598314806566
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
        metrics:
          - type: accuracy
            value: 38.69199731002017
          - type: f1
            value: 37.68119408674127
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
        metrics:
          - type: accuracy
            value: 40.474108944182916
          - type: f1
            value: 39.480530387013594
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
        metrics:
          - type: accuracy
            value: 41.523201075991935
          - type: f1
            value: 40.20097996024383
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
        metrics:
          - type: accuracy
            value: 39.54942837928716
          - type: f1
            value: 38.185561243338064
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
        metrics:
          - type: accuracy
            value: 22.8782784129119
          - type: f1
            value: 22.239467186721456
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
        metrics:
          - type: accuracy
            value: 20.51445864156019
          - type: f1
            value: 19.999047885530217
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
        metrics:
          - type: accuracy
            value: 34.92602555480834
          - type: f1
            value: 33.24016717215723
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
        metrics:
          - type: accuracy
            value: 40.74983187626093
          - type: f1
            value: 39.30274328728882
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
        metrics:
          - type: accuracy
            value: 39.06859448554136
          - type: f1
            value: 39.21542039662971
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
        metrics:
          - type: accuracy
            value: 29.747814391392062
          - type: f1
            value: 28.261836892220447
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
        metrics:
          - type: accuracy
            value: 38.02286482851379
          - type: f1
            value: 37.8742438608697
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
        metrics:
          - type: accuracy
            value: 48.550773369199725
          - type: f1
            value: 46.7399625882649
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
        metrics:
          - type: accuracy
            value: 45.17821116341628
          - type: f1
            value: 44.84809741811729
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
        metrics:
          - type: v_measure
            value: 28.301902023313875
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
        metrics:
          - type: v_measure
            value: 24.932123582259287
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
        metrics:
          - type: map
            value: 29.269341041468326
          - type: mrr
            value: 30.132140876875717
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
        metrics:
          - type: map_at_1
            value: 1.2269999999999999
          - type: map_at_10
            value: 3.081
          - type: map_at_100
            value: 4.104
          - type: map_at_1000
            value: 4.989
          - type: map_at_3
            value: 2.221
          - type: map_at_5
            value: 2.535
          - type: ndcg_at_1
            value: 15.015
          - type: ndcg_at_10
            value: 11.805
          - type: ndcg_at_100
            value: 12.452
          - type: ndcg_at_1000
            value: 22.284000000000002
          - type: ndcg_at_3
            value: 13.257
          - type: ndcg_at_5
            value: 12.199
          - type: precision_at_1
            value: 16.409000000000002
          - type: precision_at_10
            value: 9.102
          - type: precision_at_100
            value: 3.678
          - type: precision_at_1000
            value: 1.609
          - type: precision_at_3
            value: 12.797
          - type: precision_at_5
            value: 10.464
          - type: recall_at_1
            value: 1.2269999999999999
          - type: recall_at_10
            value: 5.838
          - type: recall_at_100
            value: 15.716
          - type: recall_at_1000
            value: 48.837
          - type: recall_at_3
            value: 2.828
          - type: recall_at_5
            value: 3.697
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
        metrics:
          - type: map_at_1
            value: 3.515
          - type: map_at_10
            value: 5.884
          - type: map_at_100
            value: 6.510000000000001
          - type: map_at_1000
            value: 6.598999999999999
          - type: map_at_3
            value: 4.8919999999999995
          - type: map_at_5
            value: 5.391
          - type: ndcg_at_1
            value: 4.056
          - type: ndcg_at_10
            value: 7.6259999999999994
          - type: ndcg_at_100
            value: 11.08
          - type: ndcg_at_1000
            value: 13.793
          - type: ndcg_at_3
            value: 5.537
          - type: ndcg_at_5
            value: 6.45
          - type: precision_at_1
            value: 4.056
          - type: precision_at_10
            value: 1.4569999999999999
          - type: precision_at_100
            value: 0.347
          - type: precision_at_1000
            value: 0.061
          - type: precision_at_3
            value: 2.6069999999999998
          - type: precision_at_5
            value: 2.086
          - type: recall_at_1
            value: 3.515
          - type: recall_at_10
            value: 12.312
          - type: recall_at_100
            value: 28.713
          - type: recall_at_1000
            value: 50.027
          - type: recall_at_3
            value: 6.701
          - type: recall_at_5
            value: 8.816
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
        metrics:
          - type: map_at_1
            value: 61.697
          - type: map_at_10
            value: 74.20400000000001
          - type: map_at_100
            value: 75.023
          - type: map_at_1000
            value: 75.059
          - type: map_at_3
            value: 71.265
          - type: map_at_5
            value: 73.001
          - type: ndcg_at_1
            value: 70.95
          - type: ndcg_at_10
            value: 78.96
          - type: ndcg_at_100
            value: 81.26
          - type: ndcg_at_1000
            value: 81.679
          - type: ndcg_at_3
            value: 75.246
          - type: ndcg_at_5
            value: 77.092
          - type: precision_at_1
            value: 70.95
          - type: precision_at_10
            value: 11.998000000000001
          - type: precision_at_100
            value: 1.451
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 32.629999999999995
          - type: precision_at_5
            value: 21.573999999999998
          - type: recall_at_1
            value: 61.697
          - type: recall_at_10
            value: 88.23299999999999
          - type: recall_at_100
            value: 96.961
          - type: recall_at_1000
            value: 99.401
          - type: recall_at_3
            value: 77.689
          - type: recall_at_5
            value: 82.745
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
        metrics:
          - type: v_measure
            value: 33.75741018380938
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
        metrics:
          - type: v_measure
            value: 41.00799910099266
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
        metrics:
          - type: map_at_1
            value: 1.72
          - type: map_at_10
            value: 3.8240000000000003
          - type: map_at_100
            value: 4.727
          - type: map_at_1000
            value: 4.932
          - type: map_at_3
            value: 2.867
          - type: map_at_5
            value: 3.3230000000000004
          - type: ndcg_at_1
            value: 8.5
          - type: ndcg_at_10
            value: 7.133000000000001
          - type: ndcg_at_100
            value: 11.911
          - type: ndcg_at_1000
            value: 16.962
          - type: ndcg_at_3
            value: 6.763
          - type: ndcg_at_5
            value: 5.832
          - type: precision_at_1
            value: 8.5
          - type: precision_at_10
            value: 3.6799999999999997
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.22999999999999998
          - type: precision_at_3
            value: 6.2330000000000005
          - type: precision_at_5
            value: 5.0200000000000005
          - type: recall_at_1
            value: 1.72
          - type: recall_at_10
            value: 7.487000000000001
          - type: recall_at_100
            value: 21.683
          - type: recall_at_1000
            value: 46.688
          - type: recall_at_3
            value: 3.798
          - type: recall_at_5
            value: 5.113
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
        metrics:
          - type: cos_sim_pearson
            value: 80.96286245858941
          - type: cos_sim_spearman
            value: 74.57093488947429
          - type: euclidean_pearson
            value: 75.50377970259402
          - type: euclidean_spearman
            value: 71.7498004622999
          - type: manhattan_pearson
            value: 75.3256836091382
          - type: manhattan_spearman
            value: 71.80676733410375
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
        metrics:
          - type: cos_sim_pearson
            value: 80.20938796088339
          - type: cos_sim_spearman
            value: 69.16914010333394
          - type: euclidean_pearson
            value: 79.33415250097545
          - type: euclidean_spearman
            value: 71.46707320292745
          - type: manhattan_pearson
            value: 79.73669837981976
          - type: manhattan_spearman
            value: 71.87919511134902
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
        metrics:
          - type: cos_sim_pearson
            value: 76.401935081936
          - type: cos_sim_spearman
            value: 77.23446219694267
          - type: euclidean_pearson
            value: 74.61017160439877
          - type: euclidean_spearman
            value: 75.85871531365609
          - type: manhattan_pearson
            value: 74.83034779539724
          - type: manhattan_spearman
            value: 75.95948993588429
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
        metrics:
          - type: cos_sim_pearson
            value: 75.35551963935667
          - type: cos_sim_spearman
            value: 70.98892671568665
          - type: euclidean_pearson
            value: 73.24467338564628
          - type: euclidean_spearman
            value: 71.97533151639425
          - type: manhattan_pearson
            value: 73.2776559359938
          - type: manhattan_spearman
            value: 72.2221421456084
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
        metrics:
          - type: cos_sim_pearson
            value: 79.05293131911803
          - type: cos_sim_spearman
            value: 79.7379478259805
          - type: euclidean_pearson
            value: 78.17016171851057
          - type: euclidean_spearman
            value: 78.76038607583105
          - type: manhattan_pearson
            value: 78.4994607532332
          - type: manhattan_spearman
            value: 79.13026720132872
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
        metrics:
          - type: cos_sim_pearson
            value: 76.04750373932828
          - type: cos_sim_spearman
            value: 77.93230986462234
          - type: euclidean_pearson
            value: 75.8320302521164
          - type: euclidean_spearman
            value: 76.83154481579385
          - type: manhattan_pearson
            value: 75.98713517720608
          - type: manhattan_spearman
            value: 76.95479705521507
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
        metrics:
          - type: cos_sim_pearson
            value: 43.0464619152799
          - type: cos_sim_spearman
            value: 45.65606588928089
          - type: euclidean_pearson
            value: 45.69437788355499
          - type: euclidean_spearman
            value: 45.08552742346606
          - type: manhattan_pearson
            value: 45.87166698903681
          - type: manhattan_spearman
            value: 45.155963016434164
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
        metrics:
          - type: cos_sim_pearson
            value: 53.27469278912148
          - type: cos_sim_spearman
            value: 54.16113207623789
          - type: euclidean_pearson
            value: 55.97026429327157
          - type: euclidean_spearman
            value: 54.71320909074608
          - type: manhattan_pearson
            value: 56.12511774278802
          - type: manhattan_spearman
            value: 55.22875659158676
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
        metrics:
          - type: cos_sim_pearson
            value: 1.5482997790039945
          - type: cos_sim_spearman
            value: 1.7208386347363582
          - type: euclidean_pearson
            value: 6.727915670345885
          - type: euclidean_spearman
            value: 6.112826908474543
          - type: manhattan_pearson
            value: 4.94386093060865
          - type: manhattan_spearman
            value: 5.018174110623732
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
        metrics:
          - type: cos_sim_pearson
            value: 27.5420218362265
          - type: cos_sim_spearman
            value: 25.483838431031007
          - type: euclidean_pearson
            value: 6.268684143856358
          - type: euclidean_spearman
            value: 5.877961421091679
          - type: manhattan_pearson
            value: 2.667237739227861
          - type: manhattan_spearman
            value: 2.5683839956554775
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
        metrics:
          - type: cos_sim_pearson
            value: 85.32029757646663
          - type: cos_sim_spearman
            value: 87.32720847297225
          - type: euclidean_pearson
            value: 81.12594485791254
          - type: euclidean_spearman
            value: 81.1531079489332
          - type: manhattan_pearson
            value: 81.32899414704019
          - type: manhattan_spearman
            value: 81.3897040261192
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
        metrics:
          - type: cos_sim_pearson
            value: 4.37162299241808
          - type: cos_sim_spearman
            value: 2.0879072561774543
          - type: euclidean_pearson
            value: 3.0725243785454595
          - type: euclidean_spearman
            value: 5.3721339279483535
          - type: manhattan_pearson
            value: 4.867795293367359
          - type: manhattan_spearman
            value: 7.9397069840018775
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
        metrics:
          - type: cos_sim_pearson
            value: 20.306030448858603
          - type: cos_sim_spearman
            value: 21.93220782551375
          - type: euclidean_pearson
            value: 3.878631934602361
          - type: euclidean_spearman
            value: 5.171796902725965
          - type: manhattan_pearson
            value: 7.13020644036815
          - type: manhattan_spearman
            value: 7.707315591498748
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
        metrics:
          - type: cos_sim_pearson
            value: 66.81873207478459
          - type: cos_sim_spearman
            value: 67.80273445636502
          - type: euclidean_pearson
            value: 70.60654682977268
          - type: euclidean_spearman
            value: 69.4566208379486
          - type: manhattan_pearson
            value: 70.9548461896642
          - type: manhattan_spearman
            value: 69.78323323058773
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
        metrics:
          - type: cos_sim_pearson
            value: 21.366487281202602
          - type: cos_sim_spearman
            value: 18.90627528698481
          - type: euclidean_pearson
            value: 2.3390998579461995
          - type: euclidean_spearman
            value: 4.151213674012541
          - type: manhattan_pearson
            value: 2.234831868844863
          - type: manhattan_spearman
            value: 4.555291328501442
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
        metrics:
          - type: cos_sim_pearson
            value: 20.73153177251085
          - type: cos_sim_spearman
            value: 16.3855949033176
          - type: euclidean_pearson
            value: 8.734648741714238
          - type: euclidean_spearman
            value: 10.75672244732182
          - type: manhattan_pearson
            value: 7.536654126608877
          - type: manhattan_spearman
            value: 8.330065460047296
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
        metrics:
          - type: cos_sim_pearson
            value: 26.618435024084253
          - type: cos_sim_spearman
            value: 23.488974089577816
          - type: euclidean_pearson
            value: 3.1310350304707866
          - type: euclidean_spearman
            value: 3.1242598481634665
          - type: manhattan_pearson
            value: 1.1096752982707008
          - type: manhattan_spearman
            value: 1.4591693078765848
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
        metrics:
          - type: cos_sim_pearson
            value: 59.17638344661753
          - type: cos_sim_spearman
            value: 59.636760071130865
          - type: euclidean_pearson
            value: 56.68753290255448
          - type: euclidean_spearman
            value: 57.613280258574484
          - type: manhattan_pearson
            value: 56.92312052723706
          - type: manhattan_spearman
            value: 57.76774918418505
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
        metrics:
          - type: cos_sim_pearson
            value: 10.322254716987457
          - type: cos_sim_spearman
            value: 11.0033092996862
          - type: euclidean_pearson
            value: 6.006926471684402
          - type: euclidean_spearman
            value: 10.972140246688376
          - type: manhattan_pearson
            value: 5.933298751861177
          - type: manhattan_spearman
            value: 11.030111585680233
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
        metrics:
          - type: cos_sim_pearson
            value: 43.38031880545056
          - type: cos_sim_spearman
            value: 43.05358201410913
          - type: euclidean_pearson
            value: 42.72327196362553
          - type: euclidean_spearman
            value: 42.55163899944477
          - type: manhattan_pearson
            value: 44.01557499780587
          - type: manhattan_spearman
            value: 43.12473221615855
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
        metrics:
          - type: cos_sim_pearson
            value: 4.291290504363136
          - type: cos_sim_spearman
            value: 14.912727487893479
          - type: euclidean_pearson
            value: 3.2855132112394485
          - type: euclidean_spearman
            value: 16.575204463951025
          - type: manhattan_pearson
            value: 3.2398776723465814
          - type: manhattan_spearman
            value: 16.841985772913855
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
        metrics:
          - type: cos_sim_pearson
            value: 4.102739498555817
          - type: cos_sim_spearman
            value: 3.818238576547375
          - type: euclidean_pearson
            value: 2.3181033496453556
          - type: euclidean_spearman
            value: 5.1826811802703565
          - type: manhattan_pearson
            value: 4.8006179265256455
          - type: manhattan_spearman
            value: 6.738401400306252
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
        metrics:
          - type: cos_sim_pearson
            value: 2.38765395226737
          - type: cos_sim_spearman
            value: 5.173899391162327
          - type: euclidean_pearson
            value: 3.0710263954769825
          - type: euclidean_spearman
            value: 5.04922290903982
          - type: manhattan_pearson
            value: 3.7826314109861703
          - type: manhattan_spearman
            value: 5.042238232170212
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
        metrics:
          - type: cos_sim_pearson
            value: 7.6735490672676345
          - type: cos_sim_spearman
            value: 3.3631215256878892
          - type: euclidean_pearson
            value: 4.64331702652217
          - type: euclidean_spearman
            value: 3.6129205171334324
          - type: manhattan_pearson
            value: 4.011231736076196
          - type: manhattan_spearman
            value: 3.233959766173701
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
        metrics:
          - type: cos_sim_pearson
            value: 0.06167614416104335
          - type: cos_sim_spearman
            value: 6.521685391703255
          - type: euclidean_pearson
            value: 4.884572579069032
          - type: euclidean_spearman
            value: 5.59058032900239
          - type: manhattan_pearson
            value: 6.139838096573897
          - type: manhattan_spearman
            value: 5.0060884837066215
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
        metrics:
          - type: cos_sim_pearson
            value: 53.19490347682836
          - type: cos_sim_spearman
            value: 54.56055727079527
          - type: euclidean_pearson
            value: 52.55574442039842
          - type: euclidean_spearman
            value: 52.94640154371587
          - type: manhattan_pearson
            value: 53.275993040454196
          - type: manhattan_spearman
            value: 53.174561503510155
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
        metrics:
          - type: cos_sim_pearson
            value: 51.151158530122146
          - type: cos_sim_spearman
            value: 53.926925081736655
          - type: euclidean_pearson
            value: 44.55629287737235
          - type: euclidean_spearman
            value: 46.222372143731384
          - type: manhattan_pearson
            value: 42.831322151459005
          - type: manhattan_spearman
            value: 45.70991764985799
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
        metrics:
          - type: cos_sim_pearson
            value: 30.36194885126792
          - type: cos_sim_spearman
            value: 32.739632941633836
          - type: euclidean_pearson
            value: 29.83135800843496
          - type: euclidean_spearman
            value: 31.114406001326923
          - type: manhattan_pearson
            value: 31.264502938148286
          - type: manhattan_spearman
            value: 33.3112040753475
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
        metrics:
          - type: cos_sim_pearson
            value: 35.23883630335275
          - type: cos_sim_spearman
            value: 33.67797082086704
          - type: euclidean_pearson
            value: 34.878640693874544
          - type: euclidean_spearman
            value: 33.525189235133496
          - type: manhattan_pearson
            value: 34.22761246389947
          - type: manhattan_spearman
            value: 32.713218497609176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
        metrics:
          - type: cos_sim_pearson
            value: 19.809302548119547
          - type: cos_sim_spearman
            value: 20.540370202115497
          - type: euclidean_pearson
            value: 23.006803962133016
          - type: euclidean_spearman
            value: 22.96270653079511
          - type: manhattan_pearson
            value: 25.40168317585851
          - type: manhattan_spearman
            value: 25.421508137540865
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
        metrics:
          - type: cos_sim_pearson
            value: 20.393500955410488
          - type: cos_sim_spearman
            value: 26.705713693011603
          - type: euclidean_pearson
            value: 18.168376767724585
          - type: euclidean_spearman
            value: 19.260826601517245
          - type: manhattan_pearson
            value: 18.302619990671527
          - type: manhattan_spearman
            value: 19.4691037846159
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
        metrics:
          - type: cos_sim_pearson
            value: 36.58919983075148
          - type: cos_sim_spearman
            value: 35.989722099974045
          - type: euclidean_pearson
            value: 41.045112547574206
          - type: euclidean_spearman
            value: 39.322301680629835
          - type: manhattan_pearson
            value: 41.36802503205308
          - type: manhattan_spearman
            value: 40.76270030293609
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
        metrics:
          - type: cos_sim_pearson
            value: 26.350936227950083
          - type: cos_sim_spearman
            value: 25.108218032460343
          - type: euclidean_pearson
            value: 28.61681094744849
          - type: euclidean_spearman
            value: 27.350990203943592
          - type: manhattan_pearson
            value: 30.527977072984513
          - type: manhattan_spearman
            value: 26.403339990640813
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
        metrics:
          - type: cos_sim_pearson
            value: 20.056269198600322
          - type: cos_sim_spearman
            value: 20.939990379746757
          - type: euclidean_pearson
            value: 18.942765438962198
          - type: euclidean_spearman
            value: 21.709842967237446
          - type: manhattan_pearson
            value: 23.643909798655123
          - type: manhattan_spearman
            value: 23.58828328071473
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
        metrics:
          - type: cos_sim_pearson
            value: 19.563740271419395
          - type: cos_sim_spearman
            value: 5.634361698190111
          - type: euclidean_pearson
            value: 16.833522619239474
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 5.805392712660814
          - type: manhattan_spearman
            value: 16.903085094570333
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
        metrics:
          - type: cos_sim_pearson
            value: 80.00905671833966
          - type: cos_sim_spearman
            value: 79.54269211027272
          - type: euclidean_pearson
            value: 79.51954544247441
          - type: euclidean_spearman
            value: 78.93670303434288
          - type: manhattan_pearson
            value: 79.47610653340678
          - type: manhattan_spearman
            value: 79.07344156719613
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
        metrics:
          - type: map
            value: 68.35710819755543
          - type: mrr
            value: 88.05442832403617
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
        metrics:
          - type: map_at_1
            value: 21.556
          - type: map_at_10
            value: 27.982000000000003
          - type: map_at_100
            value: 28.937
          - type: map_at_1000
            value: 29.058
          - type: map_at_3
            value: 25.644
          - type: map_at_5
            value: 26.996
          - type: ndcg_at_1
            value: 23.333000000000002
          - type: ndcg_at_10
            value: 31.787
          - type: ndcg_at_100
            value: 36.647999999999996
          - type: ndcg_at_1000
            value: 39.936
          - type: ndcg_at_3
            value: 27.299
          - type: ndcg_at_5
            value: 29.659000000000002
          - type: precision_at_1
            value: 23.333000000000002
          - type: precision_at_10
            value: 4.867
          - type: precision_at_100
            value: 0.743
          - type: precision_at_1000
            value: 0.10200000000000001
          - type: precision_at_3
            value: 11.333
          - type: precision_at_5
            value: 8.133
          - type: recall_at_1
            value: 21.556
          - type: recall_at_10
            value: 42.333
          - type: recall_at_100
            value: 65.706
          - type: recall_at_1000
            value: 91.489
          - type: recall_at_3
            value: 30.361
          - type: recall_at_5
            value: 36.222
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
        metrics:
          - type: cos_sim_accuracy
            value: 99.49306930693069
          - type: cos_sim_ap
            value: 77.7308550291728
          - type: cos_sim_f1
            value: 71.78978681209718
          - type: cos_sim_precision
            value: 71.1897738446411
          - type: cos_sim_recall
            value: 72.39999999999999
          - type: dot_accuracy
            value: 99.08118811881188
          - type: dot_ap
            value: 30.267748833368234
          - type: dot_f1
            value: 34.335201222618444
          - type: dot_precision
            value: 34.994807892004154
          - type: dot_recall
            value: 33.7
          - type: euclidean_accuracy
            value: 99.51683168316832
          - type: euclidean_ap
            value: 78.64498778235628
          - type: euclidean_f1
            value: 73.09149972929075
          - type: euclidean_precision
            value: 79.69303423848878
          - type: euclidean_recall
            value: 67.5
          - type: manhattan_accuracy
            value: 99.53168316831683
          - type: manhattan_ap
            value: 79.45274878693958
          - type: manhattan_f1
            value: 74.19863373620599
          - type: manhattan_precision
            value: 78.18383167220377
          - type: manhattan_recall
            value: 70.6
          - type: max_accuracy
            value: 99.53168316831683
          - type: max_ap
            value: 79.45274878693958
          - type: max_f1
            value: 74.19863373620599
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
        metrics:
          - type: v_measure
            value: 44.59127540530939
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
        metrics:
          - type: v_measure
            value: 28.230204578753636
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
        metrics:
          - type: map
            value: 39.96520488022785
          - type: mrr
            value: 40.189248047703934
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
        metrics:
          - type: cos_sim_pearson
            value: 30.56303767714449
          - type: cos_sim_spearman
            value: 30.256847004390487
          - type: dot_pearson
            value: 29.453520030995005
          - type: dot_spearman
            value: 29.561732550926777
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
        metrics:
          - type: map_at_1
            value: 0.11299999999999999
          - type: map_at_10
            value: 0.733
          - type: map_at_100
            value: 3.313
          - type: map_at_1000
            value: 7.355
          - type: map_at_3
            value: 0.28200000000000003
          - type: map_at_5
            value: 0.414
          - type: ndcg_at_1
            value: 42
          - type: ndcg_at_10
            value: 39.31
          - type: ndcg_at_100
            value: 26.904
          - type: ndcg_at_1000
            value: 23.778
          - type: ndcg_at_3
            value: 42.775999999999996
          - type: ndcg_at_5
            value: 41.554
          - type: precision_at_1
            value: 48
          - type: precision_at_10
            value: 43
          - type: precision_at_100
            value: 27.08
          - type: precision_at_1000
            value: 11.014
          - type: precision_at_3
            value: 48
          - type: precision_at_5
            value: 45.6
          - type: recall_at_1
            value: 0.11299999999999999
          - type: recall_at_10
            value: 0.976
          - type: recall_at_100
            value: 5.888
          - type: recall_at_1000
            value: 22.634999999999998
          - type: recall_at_3
            value: 0.329
          - type: recall_at_5
            value: 0.518
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
        metrics:
          - type: map_at_1
            value: 0.645
          - type: map_at_10
            value: 4.1160000000000005
          - type: map_at_100
            value: 7.527
          - type: map_at_1000
            value: 8.677999999999999
          - type: map_at_3
            value: 1.6019999999999999
          - type: map_at_5
            value: 2.6
          - type: ndcg_at_1
            value: 10.204
          - type: ndcg_at_10
            value: 12.27
          - type: ndcg_at_100
            value: 22.461000000000002
          - type: ndcg_at_1000
            value: 33.543
          - type: ndcg_at_3
            value: 9.982000000000001
          - type: ndcg_at_5
            value: 11.498
          - type: precision_at_1
            value: 10.204
          - type: precision_at_10
            value: 12.245000000000001
          - type: precision_at_100
            value: 5.286
          - type: precision_at_1000
            value: 1.2630000000000001
          - type: precision_at_3
            value: 10.884
          - type: precision_at_5
            value: 13.061
          - type: recall_at_1
            value: 0.645
          - type: recall_at_10
            value: 8.996
          - type: recall_at_100
            value: 33.666000000000004
          - type: recall_at_1000
            value: 67.704
          - type: recall_at_3
            value: 2.504
          - type: recall_at_5
            value: 4.95
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
        metrics:
          - type: accuracy
            value: 62.7862
          - type: ap
            value: 10.958454618347831
          - type: f1
            value: 48.37243417046763
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
        metrics:
          - type: accuracy
            value: 54.821731748726656
          - type: f1
            value: 55.14729314789282
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
        metrics:
          - type: v_measure
            value: 28.24295128553035
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
        metrics:
          - type: cos_sim_accuracy
            value: 81.5640460153782
          - type: cos_sim_ap
            value: 57.094095366921536
          - type: cos_sim_f1
            value: 55.29607083563918
          - type: cos_sim_precision
            value: 47.62631077216397
          - type: cos_sim_recall
            value: 65.91029023746702
          - type: dot_accuracy
            value: 78.81623651427549
          - type: dot_ap
            value: 47.42989400382077
          - type: dot_f1
            value: 51.25944584382871
          - type: dot_precision
            value: 42.55838271174625
          - type: dot_recall
            value: 64.43271767810026
          - type: euclidean_accuracy
            value: 80.29445073612685
          - type: euclidean_ap
            value: 53.42012231336148
          - type: euclidean_f1
            value: 51.867783563504645
          - type: euclidean_precision
            value: 45.4203013481364
          - type: euclidean_recall
            value: 60.4485488126649
          - type: manhattan_accuracy
            value: 80.2884901949097
          - type: manhattan_ap
            value: 53.43205271323232
          - type: manhattan_f1
            value: 52.014165559982295
          - type: manhattan_precision
            value: 44.796035074342356
          - type: manhattan_recall
            value: 62.00527704485488
          - type: max_accuracy
            value: 81.5640460153782
          - type: max_ap
            value: 57.094095366921536
          - type: max_f1
            value: 55.29607083563918
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
        metrics:
          - type: cos_sim_accuracy
            value: 86.63018589668955
          - type: cos_sim_ap
            value: 80.51063771262909
          - type: cos_sim_f1
            value: 72.70810586950793
          - type: cos_sim_precision
            value: 71.14123627790467
          - type: cos_sim_recall
            value: 74.3455497382199
          - type: dot_accuracy
            value: 82.41743315092948
          - type: dot_ap
            value: 69.2393381283664
          - type: dot_f1
            value: 65.61346624814597
          - type: dot_precision
            value: 59.43260638630257
          - type: dot_recall
            value: 73.22913458577148
          - type: euclidean_accuracy
            value: 86.49435324251951
          - type: euclidean_ap
            value: 80.28100477250926
          - type: euclidean_f1
            value: 72.58242344489099
          - type: euclidean_precision
            value: 67.44662568576906
          - type: euclidean_recall
            value: 78.56482907299045
          - type: manhattan_accuracy
            value: 86.59525749990297
          - type: manhattan_ap
            value: 80.37850832566262
          - type: manhattan_f1
            value: 72.59435321233073
          - type: manhattan_precision
            value: 68.19350473612991
          - type: manhattan_recall
            value: 77.60240221743148
          - type: max_accuracy
            value: 86.63018589668955
          - type: max_ap
            value: 80.51063771262909
          - type: max_f1
            value: 72.70810586950793

SGPT-125M-weightedmean-nli-bitfit

Usage

For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt

Evaluation Results

For eval results, refer to the eval folder or our paper: https://arxiv.org/abs/2202.08904

Training

The model was trained with the parameters:

DataLoader:

sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader of length 8807 with parameters:

{'batch_size': 64}

Loss:

sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss with parameters:

{'scale': 20.0, 'similarity_fct': 'cos_sim'}

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 880,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 0.0002
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 881,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)

Citing & Authors

@article{muennighoff2022sgpt,
  title={SGPT: GPT Sentence Embeddings for Semantic Search},
  author={Muennighoff, Niklas},
  journal={arXiv preprint arXiv:2202.08904},
  year={2022}
}