import joblib import numpy as np from sentence_transformers import SentenceTransformer # Load the models model1 = joblib.load('model1.joblib') model2 = joblib.load('model2.joblib') # Load the embedder embedder = SentenceTransformer('BAAI/bge-large-en-v1.5') def predict_sentiment(text): # Generate embedding embedding = embedder.encode([text]) # Make predictions pred1 = model1.predict(embedding)[0] pred2 = model2.predict(embedding)[0] # Average and round final_prediction = np.round((pred1 + pred2) / 2).astype(int) return final_prediction, pred1, pred2 # Example usage if __name__ == "__main__": test_text = "I really enjoyed this product!" final_score, score1, score2 = predict_sentiment(test_text) print(f"Text: {test_text}") print(f"Final sentiment score: {final_score}") print(f"Model 1 score: {score1}") print(f"Model 2 score: {score2}")