File size: 9,885 Bytes
be7dd82 c37187a be7dd82 aad6c1e be7dd82 2b85bc3 5ad53be c7da924 be7dd82 e0a3324 be7dd82 3af6a03 be7dd82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
base_model: mistralai/Mixtral-8x22B-Instruct-v0.1
model_creator: mistralai
quantized_by: jartine
license: apache-2.0
prompt_template: |
[INST] {{prompt}} [/INST]
tags:
- llamafile
language:
- en
---
# Mixtral 8x22B Instruct v0.1 - llamafile
This repository contains executable weights (which we call
[llamafiles](https://github.com/Mozilla-Ocho/llamafile)) that run on
Linux, MacOS, Windows, FreeBSD, OpenBSD, and NetBSD for AMD64 and ARM64.
- Model creator: [Mistral AI](https://mistral.ai/)
- Original model: [mistralai/Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
## Quickstart
Assuming your system has at least 128GB of RAM, you can try running the
following command which download, concatenate, and execute the model.
```
( curl -L https://huggingface.co/jartine/Mixtral-8x22B-Instruct-v0.1-llamafile/resolve/main/Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile.cat0
curl -L https://huggingface.co/jartine/Mixtral-8x22B-Instruct-v0.1-llamafile/resolve/main/Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile.cat1
) > Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile
chmod +x Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile
./Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile --help # view manual
./Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile # launch web gui + oai api
./Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile -p ... # cli interface (scriptable)
```
Alternatively, you may download an official `llamafile` executable from
Mozilla Ocho on GitHub, in which case you can use the Mixtral llamafiles
as a simple weights data file.
```
llamafile -m Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile ...
```
For further information, please see the [llamafile
README](https://github.com/mozilla-ocho/llamafile/).
Having **trouble?** See the ["Gotchas"
section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas)
of the README.
## Prompting
Prompt template:
```
[INST] {{prompt}} [/INST]
```
Command template:
```
./Mixtral-8x22B-Instruct-v0.1.Q4_0.llamafile -p "[INST]{{prompt}}[/INST]"
```
## About llamafile
llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023.
It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
binaries that run on the stock installs of six OSes for both ARM64 and
AMD64.
In addition to being executables, llamafiles are also zip archives. Each
llamafile contains a GGUF file, which you can extract using the `unzip`
command. If you want to change or add files to your llamafiles, then the
`zipalign` command (distributed on the llamafile github) should be used
instead of the traditional `zip` command.
## About Upload Limits
Files which exceed the Hugging Face 50GB upload limit have a .cat𝑋
extension. You need to use the `cat` command locally to turn them back
into a single file, using the same order.
## About Quantization Formats (General Advice)
Your choice of quantization format depends on three things:
1. Will it fit in RAM or VRAM?
2. Is your use case reading (e.g. summarization) or writing (e.g. chatbot)?
3. llamafiles bigger than 4.30 GB are hard to run on Windows (see [gotchas](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas))
Good quants for writing (prediction speed) are Q5\_K\_M, and Q4\_0. Text
generation is bounded by memory speed, so smaller quants help, but they
cause the LLM to hallucinate more. However that doesn't mean they can't
think correctly. A highly degraded quant like `Q2_K` may not make a
great encyclopedia, but it's still capable of logical reasoning and
the emergent capabilities LLMs exhibit.
Good quants for reading (evaluation speed) are BF16, F16, Q8\_0, and
Q4\_0 (ordered from fastest to slowest). Prompt evaluation is bounded by
flop count, which means perf can be improved through software
engineering alone, e.g. BLAS algorithms, in which case quantization
starts hurting more than it helps, since it competes for CPU resources
and makes it harder for the compiler to parallelize instructions. You
want to ideally use the simplest smallest floating point format that's
natively implemented by your hardware. In most cases, that's BF16 or
FP16. However, llamafile is able to still offer respectable tinyBLAS
speedups for llama.cpp's simplest quants: Q8\_0 and Q4\_0.
## Hardware Choices (Mixtral 8x22B Specific)
This model is very large. Even at Q2 quantization, it's still well-over
twice as large the highest tier NVIDIA gaming GPUs. llamafile supports
splitting models over multiple GPUs (for NVIDIA only currently) if you
have such a system. The easiest way to have one, if you don't, is to pay
a few bucks an hour to rent a 4x RTX 4090 rig off vast.ai.
Mac Studio is a good option for running this model locally. An M2 Ultra
desktop from Apple is affordable and has 128GB of unified RAM+VRAM. If
you have one, then llamafile will use your Metal GPU. Try starting out
with the `Q4_0` quantization level.
Another good option for running large, large language models locally and
fully under your control is to just use CPU inference. We developed new
tensor multiplication kernels on the llamafile project specifically to
speed up "mixture of experts" LLMs like Mixtral. On a AMD Threadripper
Pro 7995WX with 256GB of 5200 MT/s RAM, llamafile v0.8 runs Mixtral
8x22B Q4\_0 on Linux at 98 tokens per second for evaluation, and it
predicts 9.44 tokens per second.
---
# Model Card for Mixtral-8x22B-Instruct-v0.1
The Mixtral-8x22B-Instruct-v0.1 Large Language Model (LLM) is an instruct fine-tuned version of the [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1).
## Run the model
```python
from transformers import AutoModelForCausalLM
from mistral_common.protocol.instruct.messages import (
AssistantMessage,
UserMessage,
)
from mistral_common.protocol.instruct.tool_calls import (
Tool,
Function,
)
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
device = "cuda" # the device to load the model onto
tokenizer_v3 = MistralTokenizer.v3()
mistral_query = ChatCompletionRequest(
tools=[
Tool(
function=Function(
name="get_current_weather",
description="Get the current weather",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
)
)
],
messages=[
UserMessage(content="What's the weather like today in Paris"),
],
model="test",
)
encodeds = tokenizer_v3.encode_chat_completion(mistral_query).tokens
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x22B-Instruct-v0.1")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
sp_tokenizer = tokenizer_v3.instruct_tokenizer.tokenizer
decoded = sp_tokenizer.decode(generated_ids[0])
print(decoded)
```
# Instruct tokenizer
The HuggingFace tokenizer included in this release should match our own. To compare:
`pip install mistral-common`
```py
from mistral_common.protocol.instruct.messages import (
AssistantMessage,
UserMessage,
)
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.instruct.normalize import ChatCompletionRequest
from transformers import AutoTokenizer
tokenizer_v3 = MistralTokenizer.v3()
mistral_query = ChatCompletionRequest(
messages=[
UserMessage(content="How many experts ?"),
AssistantMessage(content="8"),
UserMessage(content="How big ?"),
AssistantMessage(content="22B"),
UserMessage(content="Noice 🎉 !"),
],
model="test",
)
hf_messages = mistral_query.model_dump()['messages']
tokenized_mistral = tokenizer_v3.encode_chat_completion(mistral_query).tokens
tokenizer_hf = AutoTokenizer.from_pretrained('mistralai/Mixtral-8x22B-Instruct-v0.1')
tokenized_hf = tokenizer_hf.apply_chat_template(hf_messages, tokenize=True)
assert tokenized_hf == tokenized_mistral
```
# Function calling and special tokens
This tokenizer includes more special tokens, related to function calling :
- [TOOL_CALLS]
- [AVAILABLE_TOOLS]
- [/AVAILABLE_TOOLS]
- [TOOL_RESULTS]
- [/TOOL_RESULTS]
If you want to use this model with function calling, please be sure to apply it similarly to what is done in our [SentencePieceTokenizerV3](https://github.com/mistralai/mistral-common/blob/main/src/mistral_common/tokens/tokenizers/sentencepiece.py#L299).
# The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux,
Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault,
Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot,
Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona,
Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon,
Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat,
Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen,
Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao,
Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang,
Valera Nemychnikova, William El Sayed, William Marshall
|