{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "G1KysHBeEJCC" }, "source": [ "# **Arabic and English Translator**" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "2eSvM9zX_2d3", "outputId": "72e76f54-afa1-4210-93aa-8e3998f1d53d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting unsloth\n", " Downloading unsloth-2024.12.4-py3-none-any.whl.metadata (59 kB)\n", "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/59.2 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.2/59.2 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting unsloth_zoo>=2024.11.8 (from unsloth)\n", " Downloading unsloth_zoo-2024.12.1-py3-none-any.whl.metadata (16 kB)\n", "Requirement already satisfied: torch>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (2.5.1+cu121)\n", "Collecting xformers>=0.0.27.post2 (from unsloth)\n", " Downloading xformers-0.0.28.post3-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (1.0 kB)\n", "Collecting bitsandbytes (from unsloth)\n", " Downloading bitsandbytes-0.45.0-py3-none-manylinux_2_24_x86_64.whl.metadata (2.9 kB)\n", "Collecting triton>=3.0.0 (from unsloth)\n", " Downloading triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.3 kB)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from unsloth) (24.2)\n", "Collecting tyro (from unsloth)\n", " Downloading tyro-0.9.2-py3-none-any.whl.metadata (9.4 kB)\n", "Requirement already satisfied: transformers>=4.46.1 in /usr/local/lib/python3.10/dist-packages (from unsloth) (4.46.3)\n", "Collecting datasets>=2.16.0 (from unsloth)\n", " Downloading datasets-3.1.0-py3-none-any.whl.metadata (20 kB)\n", "Requirement already satisfied: sentencepiece>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.2.0)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from unsloth) (4.66.6)\n", "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from unsloth) (5.9.5)\n", "Requirement already satisfied: wheel>=0.42.0 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.45.1)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from unsloth) (1.26.4)\n", "Requirement already satisfied: accelerate>=0.34.1 in /usr/local/lib/python3.10/dist-packages (from unsloth) (1.1.1)\n", "Collecting trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9 (from unsloth)\n", " Downloading trl-0.12.2-py3-none-any.whl.metadata (11 kB)\n", "Requirement already satisfied: peft!=0.11.0,>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.13.2)\n", "Collecting protobuf<4.0.0 (from unsloth)\n", " Downloading protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.metadata (679 bytes)\n", "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (from unsloth) (0.26.3)\n", "Collecting hf_transfer (from unsloth)\n", " Downloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.34.1->unsloth) (6.0.2)\n", "Requirement already satisfied: safetensors>=0.4.3 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.34.1->unsloth) (0.4.5)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (3.16.1)\n", "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (17.0.0)\n", "Collecting dill<0.3.9,>=0.3.0 (from datasets>=2.16.0->unsloth)\n", " Downloading dill-0.3.8-py3-none-any.whl.metadata (10 kB)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (2.2.2)\n", "Requirement already satisfied: requests>=2.32.2 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (2.32.3)\n", "Collecting xxhash (from datasets>=2.16.0->unsloth)\n", " Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (12 kB)\n", "Collecting multiprocess<0.70.17 (from datasets>=2.16.0->unsloth)\n", " Downloading multiprocess-0.70.16-py310-none-any.whl.metadata (7.2 kB)\n", "Collecting fsspec<=2024.9.0,>=2023.1.0 (from fsspec[http]<=2024.9.0,>=2023.1.0->datasets>=2.16.0->unsloth)\n", " Downloading fsspec-2024.9.0-py3-none-any.whl.metadata (11 kB)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.16.0->unsloth) (3.11.9)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->unsloth) (4.12.2)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (3.4.2)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (3.1.4)\n", "Requirement already satisfied: sympy==1.13.1 in /usr/local/lib/python3.10/dist-packages (from torch>=2.4.0->unsloth) (1.13.1)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy==1.13.1->torch>=2.4.0->unsloth) (1.3.0)\n", "Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.46.1->unsloth) (2024.9.11)\n", "Requirement already satisfied: tokenizers<0.21,>=0.20 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.46.1->unsloth) (0.20.3)\n", "Requirement already satisfied: rich in /usr/local/lib/python3.10/dist-packages (from trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (13.9.4)\n", "Collecting cut_cross_entropy (from unsloth_zoo>=2024.11.8->unsloth)\n", " Downloading cut_cross_entropy-24.12.1-py3-none-any.whl.metadata (9.3 kB)\n", "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from unsloth_zoo>=2024.11.8->unsloth) (11.0.0)\n", "Requirement already satisfied: docstring-parser>=0.16 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth) (0.16)\n", "Collecting shtab>=1.5.6 (from tyro->unsloth)\n", " Downloading shtab-1.7.1-py3-none-any.whl.metadata (7.3 kB)\n", "Requirement already satisfied: typeguard>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from tyro->unsloth) (4.4.1)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (2.4.4)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.3.1)\n", "Requirement already satisfied: async-timeout<6.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (4.0.3)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (24.2.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.5.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (6.1.0)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (0.2.1)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.16.0->unsloth) (1.18.3)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.4.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2.2.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.32.2->datasets>=2.16.0->unsloth) (2024.8.30)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (2.18.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=2.4.0->unsloth) (3.0.2)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2024.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets>=2.16.0->unsloth) (2024.2)\n", "Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich->trl!=0.9.0,!=0.9.1,!=0.9.2,!=0.9.3,>=0.7.9->unsloth) (0.1.2)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets>=2.16.0->unsloth) (1.16.0)\n", "Downloading unsloth-2024.12.4-py3-none-any.whl (174 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.2/174.2 kB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading datasets-3.1.0-py3-none-any.whl (480 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m480.6/480.6 kB\u001b[0m \u001b[31m22.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading protobuf-3.20.3-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m47.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading triton-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (209.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.5/209.5 MB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading trl-0.12.2-py3-none-any.whl (365 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m365.7/365.7 kB\u001b[0m \u001b[31m31.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading unsloth_zoo-2024.12.1-py3-none-any.whl (60 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.2/60.2 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading xformers-0.0.28.post3-cp310-cp310-manylinux_2_28_x86_64.whl (16.7 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.7/16.7 MB\u001b[0m \u001b[31m97.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading bitsandbytes-0.45.0-py3-none-manylinux_2_24_x86_64.whl (69.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m27.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading hf_transfer-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m93.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading tyro-0.9.2-py3-none-any.whl (112 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m112.1/112.1 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading dill-0.3.8-py3-none-any.whl (116 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m10.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m16.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m12.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hDownloading shtab-1.7.1-py3-none-any.whl (14 kB)\n", "Downloading cut_cross_entropy-24.12.1-py3-none-any.whl (22 kB)\n", "Downloading xxhash-3.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (194 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: xxhash, triton, shtab, protobuf, hf_transfer, fsspec, dill, multiprocess, xformers, tyro, cut_cross_entropy, bitsandbytes, datasets, trl, unsloth_zoo, unsloth\n", " Attempting uninstall: protobuf\n", " Found existing installation: protobuf 4.25.5\n", " Uninstalling protobuf-4.25.5:\n", " Successfully uninstalled protobuf-4.25.5\n", " Attempting uninstall: fsspec\n", " Found existing installation: fsspec 2024.10.0\n", " Uninstalling fsspec-2024.10.0:\n", " Successfully uninstalled fsspec-2024.10.0\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "gcsfs 2024.10.0 requires fsspec==2024.10.0, but you have fsspec 2024.9.0 which is incompatible.\n", "grpcio-status 1.62.3 requires protobuf>=4.21.6, but you have protobuf 3.20.3 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed bitsandbytes-0.45.0 cut_cross_entropy-24.12.1 datasets-3.1.0 dill-0.3.8 fsspec-2024.9.0 hf_transfer-0.1.8 multiprocess-0.70.16 protobuf-3.20.3 shtab-1.7.1 triton-3.1.0 trl-0.12.2 tyro-0.9.2 unsloth-2024.12.4 unsloth_zoo-2024.12.1 xformers-0.0.28.post3 xxhash-3.5.0\n" ] }, { "data": { "application/vnd.colab-display-data+json": { "id": "dbf9df8bf7454dbaab6ef975d2d37581", "pip_warning": { "packages": [ "google" ] } } }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Found existing installation: unsloth 2024.12.4\n", "Uninstalling unsloth-2024.12.4:\n", " Successfully uninstalled unsloth-2024.12.4\n", "Collecting git+https://github.com/unslothai/unsloth.git\n", " Cloning https://github.com/unslothai/unsloth.git to /tmp/pip-req-build-364nvevq\n", " Running command git clone --filter=blob:none --quiet https://github.com/unslothai/unsloth.git /tmp/pip-req-build-364nvevq\n", " Resolved https://github.com/unslothai/unsloth.git to commit df808d074d307d396b8c04640ef51375d68f2ef0\n", " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", "Building wheels for collected packages: unsloth\n", " Building wheel for unsloth (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for unsloth: filename=unsloth-2024.12.4-py3-none-any.whl size=173562 sha256=0140891ef1bba47874bd1947f9eeeda74b5c77c0dc7dfd40408bcc0ba08b44bf\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-afmdqqd7/wheels/ed/d4/e9/76fb290ee3df0a5fc21ce5c2c788e29e9607a2353d8342fd0d\n", "Successfully built unsloth\n", "Installing collected packages: unsloth\n", "Successfully installed unsloth-2024.12.4\n" ] } ], "source": [ "!pip install unsloth\n", "!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git" ] }, { "cell_type": "markdown", "metadata": { "id": "85Jlo9PnEGjN" }, "source": [] }, { "cell_type": "code", "execution_count": 2, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wqp8vZ4ImQC8", "outputId": "8f661e20-02a9-4d3c-aaae-f2e7816f92b8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n", "🦥 Unsloth Zoo will now patch everything to make training faster!\n" ] } ], "source": [ "import pandas as pd\n", "from unsloth import FastLanguageModel\n", "import torch" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 372, "referenced_widgets": [ "e551bb632a754f8ba78a36c9661a1917", "247b0bfe148a4dd6a4f23bbf79cec6b4", "789a88fa1ee045bcabf544ae95d9e157", "f3cb57c536464a908dfc290a10fb82da", "852a42665bd843888e9644b97e7467ad", "3b6f79a0f0df4d2c9042e344c4117f86", "1e1200e3727a40de8903d8b100966da8", "724cb07137f34c9dad2c7e2aeddabcdd", "01a1e84efe564c1da9b1e726d1d219c6", "36ae929c9c9e441c9e159e87f437104c", "794acbeec4284305869d0c871c69a1b7", "3bb3e596332142e0940d8e40f3db2039", "b02e725e78fd4481bf889e94b651d408", "a21c3d66d4f24ee08d06c892a8c0af9c", "f5edee46df184ca8956ef022900f81b5", "5a1f64a7fb4c476ea685b97072621d42", "581c0de230b6485ab4e543f72d017147", "38b13c4e0101417796b8576a1964ff9f", "37ae3ffc081749f58b12127aa416ed91", "22c89fa1dd3543c4b549e58603d37234", "90a819342d8249609af8c7bdd451215e", "58fd93a4ee3d4464a7b95f51d194e7d3", "2d894a3b562c43efa5ebaed2fbb12b35", "08fc1651e54b4ab5aa167b1d4a24ccdd", "118bd48fad064714a96e00bc7713832e", "faad459e297f48a0b223ef794aa33c59", "40daedddecd9455d95a26fb4fc1a581d", "7a8f09a6812a47f1b56dbc529b3db1d4", "396a0e92cb2f4e4196a5493fe265cdbb", "99fe33f710c04899820137969e3a5ba1", "5d19c1f508c041f48ae39f4c79be78dc", "9c9bd4df5ff24420bece243bce39bbff", "4335fc2b2c084f40b0c1c7fa219d93b7", "57b718b8108e4b2296040e19143391b7", "d2b383ee56d5494a839a7c67e01c92d2", "0d655bdd9fb94ca4a72b6a77fecaa02f", "af89710da44a4ee5815f65fa17dce485", "49955114aa5d40b7b3ced7bfa0729bdb", "213af196dfe8444480ec721616f085b9", "5cbca3f7bab748af91f8b38c15d44015", "b7a231ec2a594315b8e1794ba9bf5301", "77bf2853cfba437786d7268db5837e98", "4337c8d2f24a4c0da21e79d8e240a765", "b78267be50754729b2c9ab6c0e5a639e", "4e6f2e37b1bd42ad8963cda28b0aea4b", "8204331de3cf4fedae7ce11098c96a29", "5e54bf72110845f88ba002ed4b2c1285", "4f453bf1f8a54c92bce5f9f2466aeb64", "02e5bcdd62bb4193ac87aef526be02ee", "37135d833cc04e2abdfecd0d34af8d84", "77240b62246e40e994c74b40519166ca", "1c90ed042b534610ab59972fee3bf017", "c81e3554ba6548f18895c7bb6c8f5e2b", "4ce21bc4d7cb4f18836311837cb7aad0", "f1069cc6b9e648a69e4615fea5b16422", "c5393d1070bb4b2bb726b6fa4d5634ee", "d0993ccf77f94894894a63cb5d4b200a", "9c4a6a8332b84114811b6a1e829416c1", "b3aefe911588430a84f86c7fe9d89721", "1ca38a0417904ea4a62a9b9b782c23d8", "5fa491a7ede742fab73db5a3814168bb", "1fb86c45c9c741ee9eff0d3858ac9062", "11064f07959746a98966fc0abcccbb47", "504f8876cb11424395b27a227e73bec3", "84e02c549d194e298a9c922bfb0cfa52", "e38ccf92718a421680ffab72f5c8a0df", "3295d5afb2194603b05577a37700fcf8", "1a64461fa04f4d2a9289123c83c2da9c", "2007f0edfa004e4f966788f316e501a6", "cfbf2ab837c84f81a5e40b941dfcd60a", "66d3d7e894b24b9582d95cfd1b678856", "1a5e858c2bb344828dab7ac83824efc3", "2220d2ce35df40bbb4abec5de1480b1a", "04260695b198425c810ad35db2b54d91", "082b0e53f4ff4c168b6b0124644388e3", "ace378acad5146969ac055f3bd01ea49", "03a48fdcc2c8407a825fa71b5247e3f9" ] }, "id": "QmUBVEnvCDJv", "outputId": "03185fd5-888a-4ec4-dcf4-6be433d47f5a" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "==((====))== Unsloth 2024.12.4: Fast Llama patching. Transformers:4.46.3.\n", " \\\\ /| GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.564 GB. Platform: Linux.\n", "O^O/ \\_/ \\ Torch: 2.5.1+cu121. CUDA: 8.0. CUDA Toolkit: 12.1. Triton: 3.1.0\n", "\\ / Bfloat16 = TRUE. FA [Xformers = 0.0.28.post3. FA2 = False]\n", " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n", "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e551bb632a754f8ba78a36c9661a1917", "version_major": 2, "version_minor": 0 }, "text/plain": [ "model.safetensors: 0%| | 0.00/2.26G [00:00\n", "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
instructioninputoutput
0Could you render the given sentence into Arabic?Give three tips for staying healthy.أعط ثلاث نصائح للبقاء بصحة جيدة.
1The given sentence is in English, you should t...1. Eat a balanced and nutritious diet: Make su...1. تناول نظامًا غذائيًا متوازنًا ومغذيًا: تأك...
2Your job is to translate the below sentence in...What are the three primary colors?ما هي الألوان الثلاثة الأساسية؟
3I would like the given sentence to be translat...The three primary colors are red, blue, and ye...الألوان الثلاثة الأساسية هي الأحمر والأزرق وال...
4The given sentence is in English, you should t...Describe the structure of an atom.صف بنية الذرة.
\n", "
\n", "
\n", "\n", "
\n", " \n", "\n", " \n", "\n", " \n", "
\n", "\n", "\n", "
\n", " \n", "\n", "\n", "\n", " \n", "
\n", "\n", "
\n", " \n" ], "text/plain": [ " instruction \\\n", "0 Could you render the given sentence into Arabic? \n", "1 The given sentence is in English, you should t... \n", "2 Your job is to translate the below sentence in... \n", "3 I would like the given sentence to be translat... \n", "4 The given sentence is in English, you should t... \n", "\n", " input \\\n", "0 Give three tips for staying healthy. \n", "1 1. Eat a balanced and nutritious diet: Make su... \n", "2 What are the three primary colors? \n", "3 The three primary colors are red, blue, and ye... \n", "4 Describe the structure of an atom. \n", "\n", " output \n", "0 أعط ثلاث نصائح للبقاء بصحة جيدة. \n", "1 1. تناول نظامًا غذائيًا متوازنًا ومغذيًا: تأك... \n", "2 ما هي الألوان الثلاثة الأساسية؟ \n", "3 الألوان الثلاثة الأساسية هي الأحمر والأزرق وال... \n", "4 صف بنية الذرة. " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load the dataset using pandas\n", "data_df = pd.read_json('/content/drive/MyDrive/Ara/Arabic.json', encoding='utf-8')\n", "data_df.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "KdEl4qfAk7Xp", "outputId": "ced94792-f1c3-4a58-eb76-e6acf752b994" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total dataset size: 400\n", "Training dataset size: 320\n", "Validation dataset size: 80\n" ] } ], "source": [ "import pandas as pd\n", "from transformers import AutoTokenizer\n", "from datasets import Dataset\n", "\n", "Arabic_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "{}\n", "\n", "### Input:\n", "{}\n", "\n", "### Response:\n", "{}\"\"\"\n", "\n", "EOS_TOKEN = tokenizer.eos_token\n", "\n", "data_df = pd.read_json('/content/drive/MyDrive/Ara/Arabic.json', encoding='utf-8')\n", "data_df = data_df.head(400)\n", "\n", "def formatting_prompts_func(row):\n", " instruction = row['instruction']\n", " input_text = row['input']\n", " output_text = row['output']\n", " return f\"{Arabic_prompt.format(instruction, input_text, output_text)}{EOS_TOKEN}\"\n", "\n", "data_df['formatted_text'] = data_df.apply(formatting_prompts_func, axis=1)\n", "\n", "dataset = Dataset.from_dict({\"text\": data_df['formatted_text'].tolist()})\n", "split_data = dataset.train_test_split(test_size=0.2, seed=42)\n", "train_dataset = split_data[\"train\"]\n", "validation_dataset = split_data[\"test\"]\n", "\n", "print(f\"Total dataset size: {len(dataset)}\")\n", "print(f\"Training dataset size: {len(train_dataset)}\")\n", "print(f\"Validation dataset size: {len(validation_dataset)}\")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "idAEIeSQ3xdS" }, "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 193, "referenced_widgets": [ "b8aeb76dfc6949f4b79af25c7c597383", "e8ac8ca4b4244e31b00bb6daeb0d5769", "619d21c97b864413ab5eeb80c46cee6c", "e0a2959b0ce14f1cba29c39e88a0ed89", "acc42289ec6642ea98fc813805cfa1c4", "f46ccdd94ab746f19c2fe2e9798a1840", "8fc24b9978774d44a95fffad5b50d0e9", "e2e96ab460a04d52a87cf68056fa0412", "ae5c7d36abb040628b07fe7c1b0647cc", "4147fe1eb1b84d52856c4196e4fcd7a0", "8e3e0b1f50b4408880ad0d610b4f88ad", "7febf02e32044696a0cac579e448f002", "65557073a7d4482bb574ef612e1275e4", "9c39f2e282974061943435b3943d0b79", "1005311767be404c922319cb08baae81", "41f34b5a302948fca891b04f4c6cbaa4", "6ba5a422ee4b45e4853ed1a3a0ee6b89", "67997f7702bc4a8289453e6a5ea42fc8", "e98a87f8958d4cd389a2d1b4ec5a7a62", "c31f6091d6fa440799cf39d964e2c9fe", "4244c549ec264c08b2c8bfe5889da6cd", "a0270e8d0611407c97f1f565abef3da2" ] }, "id": "95_Nn-89DhsL", "outputId": "eae86b15-af52-4855-b0ec-4b1a9c75dfa8" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", " warnings.warn(\n", "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1568: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b8aeb76dfc6949f4b79af25c7c597383", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map (num_proc=2): 0%| | 0/320 [00:00\n", " \n", " \n", " [30/30 01:41, Epoch 0/1]\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StepTraining LossValidation Loss
51.3387001.055234
100.7436000.725511
150.5042000.647183
200.5356000.589806
250.4920000.555610
300.5485000.542290

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Fine-tuned model training completed.\n", "Training metrics saved as 'training_curve_Phi_3_5_Arabic.csv'\n" ] } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "trainer_stats = trainer.train()\n", "\n", "metrics = trainer.state.log_history\n", "df = pd.DataFrame(metrics)\n", "df.to_csv(\"training_curve_Phi_3_5_Arabic.csv\", index=False)\n", "\n", "print(\"Fine-tuned model training completed.\")\n", "print(\"Training metrics saved as 'training_curve_Phi_3_5_Arabic.csv'\")\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Y0B5t2AVDeVh", "outputId": "8f9d1b12-0972-48e9-f577-e0e08a613f0c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fine-tuned model saved as 'Phi_3_5_Fine_tuned_model_Arabic'\n" ] } ], "source": [ "trainer.save_model(\"Phi_3_5_Fine_tuned_model_Arabic\")\n", "tokenizer.save_pretrained(\"Phi_3_5_Fine_tuned_model_Arabic\")\n", "\n", "print(\"Fine-tuned model saved as 'Phi_3_5_Fine_tuned_model_Arabic'\")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 509 }, "id": "ZMkcCqKRMb15", "outputId": "78d5fcef-ef32-40b3-bbfb-6fe62f6a0e5f" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJSUlEQVR4nO3dd3hTZfvA8W+SposuCp1Q9t5LsCBLNlpFRFFQQBRfEXAADn7KdOCWV1TcoiKKICC8IlCQIYjsMiybQoEuoHTv5Pz+CAmUrrTNaJP7c129NCdn3M/Jobn7TJWiKApCCCGEEA5Cbe8AhBBCCCEsSZIbIYQQQjgUSW6EEEII4VAkuRFCCCGEQ5HkRgghhBAORZIbIYQQQjgUSW6EEEII4VAkuRFCCCGEQ5HkRgghhBAORZIb4fTGjRtHgwYNKnTsnDlzUKlUlg2oijl37hwqlYrFixfb/NoqlYo5c+aYXi9evBiVSsW5c+fKPLZBgwaMGzfOovFU5lkRQtiOJDeiylKpVGb9bN261d6hOr1nnnkGlUrF6dOnS9znlVdeQaVScfjwYRtGVn5xcXHMmTOHqKgoe4diYkww33vvPXuHYpbExESmT59OixYt8PT0pEaNGnTu3JnXX3+dlJQUe4cnnICLvQMQoiQ//PBDodfff/89kZGRRba3bNmyUtf58ssv0ev1FTr21Vdf5eWXX67U9R3B6NGjWbhwIUuXLmXWrFnF7vPTTz/Rtm1b2rVrV+HrPProozz00EO4ublV+BxliYuLY+7cuTRo0IAOHToUeq8yz4qz2Lt3L0OHDiUjI4NHHnmEzp07A7Bv3z7eeusttm/fzsaNG+0cpXB0ktyIKuuRRx4p9Pqff/4hMjKyyPZbZWVl4enpafZ1tFptheIDcHFxwcVF/hl169aNJk2a8NNPPxWb3OzatYuYmBjeeuutSl1Ho9Gg0WgqdY7KqMyz4gxSUlK477770Gg0HDx4kBYtWhR6/4033uDLL7+0yLUyMzOpUaOGRc4lHI80S4lqrU+fPrRp04b9+/fTq1cvPD09+b//+z8AfvvtN+666y5CQ0Nxc3OjcePGvPbaa+h0ukLnuLUfxc1NAF988QWNGzfGzc2N2267jb179xY6trg+NyqVismTJ7N69WratGmDm5sbrVu3Zv369UXi37p1K126dMHd3Z3GjRvz+eefm92P56+//uKBBx6gXr16uLm5ERYWxvPPP092dnaR8nl5eXHp0iWGDRuGl5cXAQEBTJ8+vci9SElJYdy4cfj6+uLn58fYsWPNbkYYPXo0x48f58CBA0XeW7p0KSqViocffpi8vDxmzZpF586d8fX1pUaNGvTs2ZMtW7aUeY3i+twoisLrr79O3bp18fT0pG/fvvz7779Fjk1OTmb69Om0bdsWLy8vfHx8GDJkCIcOHTLts3XrVm677TYAHnvsMVPTp7G/UXF9bjIzM5k2bRphYWG4ubnRvHlz3nvvPRRFKbRfeZ6LikpKSuLxxx8nKCgId3d32rdvz3fffVdkv59//pnOnTvj7e2Nj48Pbdu25b///a/p/fz8fObOnUvTpk1xd3enVq1a3HHHHURGRpZ6/c8//5xLly7xwQcfFElsAIKCgnj11VdNr2/tU2V0a38p4+e+bds2nn76aQIDA6lbty4rVqwwbS8uFpVKxdGjR03bjh8/zogRI/D398fd3Z0uXbqwZs2aUsskqif5k1NUe1evXmXIkCE89NBDPPLIIwQFBQGGX4heXl5MnToVLy8v/vzzT2bNmkVaWhrvvvtumeddunQp6enp/Oc//0GlUvHOO+8wfPhwzp49W+Zf8Dt27GDlypU8/fTTeHt789FHH3H//fcTGxtLrVq1ADh48CCDBw8mJCSEuXPnotPpmDdvHgEBAWaVe/ny5WRlZTFx4kRq1arFnj17WLhwIRcvXmT58uWF9tXpdAwaNIhu3brx3nvvsWnTJt5//30aN27MxIkTAUOScO+997Jjxw6eeuopWrZsyapVqxg7dqxZ8YwePZq5c+eydOlSOnXqVOjav/zyCz179qRevXpcuXKFr776iocffpgJEyaQnp7O119/zaBBg9izZ0+RpqCyzJo1i9dff52hQ4cydOhQDhw4wMCBA8nLyyu039mzZ1m9ejUPPPAADRs2JDExkc8//5zevXsTHR1NaGgoLVu2ZN68ecyaNYsnn3ySnj17AtC9e/dir60oCvfccw9btmzh8ccfp0OHDmzYsIEXXniBS5cu8eGHHxba35znoqKys7Pp06cPp0+fZvLkyTRs2JDly5czbtw4UlJSePbZZwGIjIzk4Ycfpl+/frz99tsAHDt2jJ07d5r2mTNnDvPnz+eJJ56ga9eupKWlsW/fPg4cOMCAAQNKjGHNmjV4eHgwYsSISpWlJE8//TQBAQHMmjWLzMxM7rrrLry8vPjll1/o3bt3oX2XLVtG69atadOmDQD//vsvPXr0oE6dOrz88svUqFGDX375hWHDhvHrr79y3333WSVmYSeKENXEpEmTlFsf2d69eyuA8tlnnxXZPysrq8i2//znP4qnp6eSk5Nj2jZ27Filfv36ptcxMTEKoNSqVUtJTk42bf/tt98UQFm7dq1p2+zZs4vEBCiurq7K6dOnTdsOHTqkAMrChQtN2yIiIhRPT0/l0qVLpm2nTp1SXFxcipyzOMWVb/78+YpKpVLOnz9fqHyAMm/evEL7duzYUencubPp9erVqxVAeeedd0zbCgoKlJ49eyqA8u2335YZ02233abUrVtX0el0pm3r169XAOXzzz83nTM3N7fQcdeuXVOCgoKU8ePHF9oOKLNnzza9/vbbbxVAiYmJURRFUZKSkhRXV1flrrvuUvR6vWm///u//1MAZezYsaZtOTk5heJSFMNn7ebmVuje7N27t8Ty3vqsGO/Z66+/Xmi/ESNGKCqVqtAzYO5zURzjM/nuu++WuM+CBQsUQFmyZIlpW15enhIeHq54eXkpaWlpiqIoyrPPPqv4+PgoBQUFJZ6rffv2yl133VVqTMWpWbOm0r59e7P3v/XzNapfv36hz874ud9xxx1F4n744YeVwMDAQtvj4+MVtVpd6HPt16+f0rZt20L/9vV6vdK9e3eladOmZscsqgdplhLVnpubG4899liR7R4eHqb/T09P58qVK/Ts2ZOsrCyOHz9e5nlHjhxJzZo1Ta+Nf8WfPXu2zGP79+9P48aNTa/btWuHj4+P6VidTsemTZsYNmwYoaGhpv2aNGnCkCFDyjw/FC5fZmYmV65coXv37iiKwsGDB4vs/9RTTxV63bNnz0JlWbduHS4uLqaaHDD0cZkyZYpZ8YChn9TFixfZvn27advSpUtxdXXlgQceMJ3T1dUVAL1eT3JyMgUFBXTp0qXYJq3SbNq0iby8PKZMmVKoKe+5554rsq+bmxtqteFXnk6n4+rVq3h5edG8efNyX9do3bp1aDQannnmmULbp02bhqIo/PHHH4W2l/VcVMa6desIDg7m4YcfNm3TarU888wzZGRkmJpu/Pz8yMzMLLWJyc/Pj3///ZdTp06VK4a0tDS8vb0rVgAzTJgwoUifq5EjR5KUlFRo1OSKFSvQ6/WMHDkSMDRJ/vnnnzz44IOm3wVXrlzh6tWrDBo0iFOnTnHp0iWrxS1sT5IbUe3VqVPH9GV5s3///Zf77rsPX19ffHx8CAgIMHVGTk1NLfO89erVK/TamOhcu3at3Mcajzcem5SURHZ2Nk2aNCmyX3HbihMbG8u4cePw9/c39aMxVs3fWj53d/cizV03xwNw/vx5QkJC8PLyKrRf8+bNzYoH4KGHHkKj0bB06VIAcnJyWLVqFUOGDCmUKH733Xe0a9fO1J8jICCA33//3azP5Wbnz58HoGnTpoW2BwQEFLoeGBKpDz/8kKZNm+Lm5kbt2rUJCAjg8OHD5b7uzdcPDQ0t8oVuHMFnjM+orOeiMs6fP0/Tpk1NCVxJsTz99NM0a9aMIUOGULduXcaPH1+k38+8efNISUmhWbNmtG3blhdeeMGsIfw+Pj6kp6dXuiwladiwYZFtgwcPxtfXl2XLlpm2LVu2jA4dOtCsWTMATp8+jaIozJw5k4CAgEI/s2fPBgz/JoXjkORGVHs312AYpaSk0Lt3bw4dOsS8efNYu3YtkZGRpj4G5gznLWlUjnJLR1FLH2sOnU7HgAED+P3333nppZdYvXo1kZGRpo6vt5bPViOMAgMDGTBgAL/++iv5+fmsXbuW9PR0Ro8ebdpnyZIljBs3jsaNG/P111+zfv16IiMjufPOO606zPrNN99k6tSp9OrViyVLlrBhwwYiIyNp3bq1zYZ3W/u5MEdgYCBRUVGsWbPG1F9oyJAhhfpW9erVizNnzvDNN9/Qpk0bvvrqKzp16sRXX31V6rlbtGjByZMni/R3Kq9bO7obFfdv3c3NjWHDhrFq1SoKCgq4dOkSO3fuNNXawI1/D9OnTycyMrLYH3P/qBDVg3QoFg5p69atXL16lZUrV9KrVy/T9piYGDtGdUNgYCDu7u7FTnpX2kR4RkeOHOHkyZN89913jBkzxrS9rNEspalfvz6bN28mIyOjUO3NiRMnynWe0aNHs379ev744w+WLl2Kj48PERERpvdXrFhBo0aNWLlyZaGmJONf0OWNGeDUqVM0atTItP3y5ctFakNWrFhB3759+frrrwttT0lJoXbt2qbX5Zlxun79+mzatIn09PRCtTfGZk9jfLZQv359Dh8+jF6vL1R7U1wsrq6uREREEBERgV6v5+mnn+bzzz9n5syZpi95f39/HnvsMR577DEyMjLo1asXc+bM4YknnigxhoiICHbt2sWvv/5aqHmsJDVr1iwyGi8vL4/4+PjyFJ2RI0fy3XffsXnzZo4dO4aiKIWSG+OzodVq6d+/f7nOLaonqbkRDsn4F/LNfxHn5eXx6aef2iukQjQaDf3792f16tXExcWZtp8+fbpIP42SjofC5VMUpdBw3vIaOnQoBQUFLFq0yLRNp9OxcOHCcp1n2LBheHp68umnn/LHH38wfPhw3N3dS4199+7d7Nq1q9wx9+/fH61Wy8KFCwudb8GCBUX21Wg0RWpIli9fXqSvhXHuFHOGwA8dOhSdTsfHH39caPuHH36ISqUyu/+UJQwdOpSEhIRCzTMFBQUsXLgQLy8vU5Pl1atXCx2nVqtNEyvm5uYWu4+XlxdNmjQxvV+Sp556ipCQEKZNm8bJkyeLvJ+UlMTrr79uet24ceNC/bMAvvjiixJrbkrSv39//P39WbZsGcuWLaNr166FmrACAwPp06cPn3/+ebGJ0+XLl8t1PVH1Sc2NcEjdu3enZs2ajB071rQ0wA8//GDT6v+yzJkzh40bN9KjRw8mTpxo+pJs06ZNmVP/t2jRgsaNGzN9+nQuXbqEj48Pv/76a6X6bkRERNCjRw9efvllzp07R6tWrVi5cmW5+6N4eXkxbNgwU7+bm5ukAO6++25WrlzJfffdx1133UVMTAyfffYZrVq1IiMjo1zXMs7XM3/+fO6++26GDh3KwYMH+eOPPwrVxhivO2/ePB577DG6d+/OkSNH+PHHHwvV+IDhC9fPz4/PPvsMb29vatSoQbdu3Yrt7xEREUHfvn155ZVXOHfuHO3bt2fjxo389ttvPPfcc4U6D1vC5s2bycnJKbJ92LBhPPnkk3z++eeMGzeO/fv306BBA1asWMHOnTtZsGCBqWbpiSeeIDk5mTvvvJO6dety/vx5Fi5cSIcOHUz9c1q1akWfPn3o3Lkz/v7+7Nu3jxUrVjB58uRS46tZsyarVq1i6NChdOjQodAMxQcOHOCnn34iPDzctP8TTzzBU089xf3338+AAQM4dOgQGzZsKPLZlUWr1TJ8+HB+/vlnMjMzi12m4pNPPuGOO+6gbdu2TJgwgUaNGpGYmMiuXbu4ePFiofmOhAOwxxAtISqipKHgrVu3Lnb/nTt3Krfffrvi4eGhhIaGKi+++KKyYcMGBVC2bNli2q+koeDFDbvllqGrJQ0FnzRpUpFjbx3eqiiKsnnzZqVjx46Kq6ur0rhxY+Wrr75Spk2bpri7u5dwF26Ijo5W+vfvr3h5eSm1a9dWJkyYYBpafPMw5rFjxyo1atQocnxxsV+9elV59NFHFR8fH8XX11d59NFHlYMHD5o9FNzo999/VwAlJCSkyPBrvV6vvPnmm0r9+vUVNzc3pWPHjsr//ve/Ip+DopQ9FFxRFEWn0ylz585VQkJCFA8PD6VPnz7K0aNHi9zvnJwcZdq0aab9evTooezatUvp3bu30rt370LX/e2335RWrVqZhuUby15cjOnp6crzzz+vhIaGKlqtVmnatKny7rvvFhqabiyLuc/FrYzPZEk/P/zwg6IoipKYmKg89thjSu3atRVXV1elbdu2RT63FStWKAMHDlQCAwMVV1dXpV69esp//vMfJT4+3rTP66+/rnTt2lXx8/NTPDw8lBYtWihvvPGGkpeXV2qcRnFxccrzzz+vNGvWTHF3d1c8PT2Vzp07K2+88YaSmppq2k+n0ykvvfSSUrt2bcXT01MZNGiQcvr06RKHgu/du7fEa0ZGRiqAolKplAsXLhS7z5kzZ5QxY8YowcHBilarVerUqaPcfffdyooVK8wql6g+VIpShf6UFUIwbNiwCg3DFUIIYSB9boSwo1uXSjh16hTr1q2jT58+9glICCEcgNTcCGFHISEhjBs3jkaNGnH+/HkWLVpEbm4uBw8eLDJ3ixBCCPNIh2Ih7Gjw4MH89NNPJCQk4ObmRnh4OG+++aYkNkIIUQlScyOEEEIIhyJ9boQQQgjhUCS5EUIIIYRDcbo+N3q9nri4OLy9vcs1zboQQggh7EdRFNLT0wkNDS2yQOytnC65iYuLIywszN5hCCGEEKICLly4QN26dUvdx67Jzfbt23n33XfZv38/8fHxrFq1imHDhpV6zI8//sg777zDqVOn8PX1ZciQIbz77rvUqlXLrGsapyC/cOECPj4+lS1CIfn5+WzcuJGBAwei1Woteu7qwNnLD3IPnL38IPdAyu/c5Qfr3YO0tDTCwsIKLVJbErsmN5mZmbRv357x48czfPjwMvffuXMnY8aM4cMPPyQiIoJLly7x1FNPMWHCBFauXGnWNY1NUT4+PlZJbjw9PfHx8XHKh9rZyw9yD5y9/CD3QMrv3OUH698Dc7qU2DW5GTJkSLlWzd21axcNGjTgmWeeAaBhw4b85z//4e2337ZWiEIIIYSoZqrVaKnw8HAuXLjAunXrUBSFxMREVqxYwdChQ+0dmhBCCCGqiGrVobhHjx78+OOPjBw5kpycHAoKCoiIiOCTTz4p8Zjc3Fxyc3NNr9PS0gBDtVl+fr5F4zOez9LnrS6cvfwg98DZyw9yD6T8zl1+sN49KM/5qswMxSqVqswOxdHR0fTv35/nn3+eQYMGER8fzwsvvMBtt93G119/Xewxc+bMYe7cuUW2L126FE9PT0uFL4QQTkWlUqHRaOwdhnAwBQUFJb6XlZXFqFGjSE1NLbPPbLVKbh599FFycnJYvny5aduOHTvo2bMncXFxhISEFDmmuJqbsLAwrly5YpUOxZGRkQwYMMApO5I5e/lB7oGzlx8c/x4oikJSUpKpFry493NycnB3d3fKucScvfxQuXugVqupV69esf920tLSqF27tlnJTbVqlsrKysLFpXDIxr8cSsrR3NzccHNzK7Jdq9Va7RePNc9dHTh7+UHugbOXHxz3HsTHx5Oenk5QUBCenp5Fvrz0ej0ZGRl4eXmVOdGaI3L28kPF74Fxkt3Lly9Tr169Is9Wef492TW5ycjI4PTp06bXMTExREVF4e/vT7169ZgxYwaXLl3i+++/ByAiIoIJEyawaNEiU7PUc889R9euXQkNDbVXMYQQwinodDpSUlIIDAwscW4xvV5PXl4e7u7uTvnl7uzlh8rdg4CAAOLi4igoKKjUHwd2TW727dtH3759Ta+nTp0KwNixY1m8eDHx8fHExsaa3h83bhzp6el8/PHHTJs2DT8/P+68804ZCi6EEDZg7NAp/RWFtbi6ugKGRLraJjd9+vQpsTkJYPHixUW2TZkyhSlTplgxKiGEEKVx1r4kwvos9WxVqz43AnR6hT0xySSl5xDo7U7Xhv5o1PKLRgghhDCS5KYaWX80nrlro4lPzTFtC/F1Z3ZEKwa3KTpSTAghhHU0aNCA5557jueee86s/bdu3Urfvn25du0afn5+Vo1NVLMZip3Z+qPxTFxyoFBiA5CQmsPEJQdYfzTeTpEJIUT56PQKu85c5beoS+w6cxWd3nozkqhUqlJ/5syZU6Hz7t27lyeffNLs/bt37058fDy+vr4Vup65tm7dikqlIiUlxarXqeqk5qYa0OkV5q6Nprh//gqgAuaujWZAq2BpohJCVGm2roGOj7/xh9+yZcuYNWsWJ06cMG3z8vIy/b+iKOh0uiJTjhQnICCgXHG4uroSHBxcrmNExUnNTTWwJya5SI3NzRQgPjWHPTHJtgtKCCHKyR410MHBwaYfX19fVCqV6fXx48fx9vbmjz/+oHPnzri5ubFjxw7OnDnDvffeS1BQEF5eXtx2221s2rSp0HkbNGjAggULTK9VKhVfffUVw4cPJzQ0lObNm7NmzRrT+7fWqCxevBg/Pz82bNhAy5Yt8fLyYvDgwYWSsYKCAp555hn8/PyoVasWL730EmPHji11stuyXLt2jTFjxlCzZk08PT0ZMmQIp06dMr1//vx5IiIiqFmzJjVq1KB169asW7fOdOzo0aMJCAjAw8ODpk2b8u2331Y4FmuS5KYaSEovObGpyH5CCGEpiqKQlVdQ6Cc7T1dkW3pOPrPX/FtiDTTAnDXRpOfkFzm2uB9LTq7/8ssv89Zbb3Hs2DHatWtHRkYGQ4cOZfPmzRw8eJDBgwcTERFRaGqS4sydO5cHHniAHTt2MGTIEEaPHk1ycsl/dGZlZfHee+/xww8/sH37dmJjY5k+fbrp/bfffpsff/yRb7/9lp07d5KWlsbq1asrVdZx48axb98+1qxZw65du1AUhaFDh5qG+U+aNInc3Fy2b9/OkSNHePvtt021WzNnziQ6Opo//viDY8eOsWjRImrXrl2peKxFmqWqgUBvd4vuJ4QQlpKdr6PVrA2VPo8CJKTl0HbORrP2j543CE9Xy3yFzZs3jwEDBphe+/v70759e9Pr1157jVWrVrFmzRomT55c4nnGjRvHww8/TFpaGm+88QYLFy5kz549DB48uNj98/Pz+eyzz2jcuDEAkydPZt68eab3Fy5cyIwZM7jvvvsA+Pjjj021KBVx6tQp1qxZw86dO+nevTsAP/74I2FhYaxevZoHHniA2NhY7r//ftq2bQtAo0aNTMfHxsbSsWNHunTpAhhqr6oqqbmpBro29KdWDdcS31dhaLPu2tDfdkEJIYSDMH5ZG2VkZDB9+nRatmyJn58fXl5eHDt2rMyam3bt2pn+v0aNGvj4+JCUlFTi/p6enqbEBiAkJMS0f2pqKomJiXTt2tX0vkajoXPnzuUq282OHTuGi4sL3bp1M22rVasWzZs359ixYwA888wzvP766/To0YPZs2dz+PBh074TJ07k559/pkOHDrz44ov8/fffFY7F2qTmphrI1+lL7Chs3Do7opV0JhZC2JyHVkP0vEGm13q9nvS0dLx9vAtNvb8nJplx3+4t83yLH7vNrD/UPLSWW5G8Ro0ahV5Pnz6dyMhI3nvvPZo0aYKHhwcjRowgLy+v1PPcOqOuSqVCr9eXa397r2X9xBNPMGjQIH7//Xc2btzI/Pnzef/995kyZQpDhgzh/PnzrFu3jsjISPr168ekSZN477337BpzcaTmphr4MPIkSem5+Hq4EORTeBHQYF93Fj3SSea5EULYhUqlwtPVpdCPh6umyLaeTQMI8XWnpD/BjDXQPZsGFDm2uB9rzpK8c+dOxo0bx3333Ufbtm0JDg7m3LlzVrtecXx9fQkKCmLv3hsJoU6n48CBAxU+Z8uWLSkoKGD37t2mbVevXuXEiRO0atXKtC0sLIynnnqKlStXMm3aNL788kvTewEBAYwdO5YlS5awYMECvvjiiwrHY01Sc1PFRV1I4cu/zgLwwYMd6NM8kKd/3M+GfxOJaB/CgpEdpcZGCFHladQqZke0YuKSA6igUMfiqlYD3bRpU1auXElERAQqlYqZM2eWWgNjLVOmTGH+/Pk0adKEFi1asHDhQq5du2ZWYnfkyBG8vb1Nr1UqFe3bt+fee+9lwoQJfP7553h7e/Pyyy9Tp04d7r33XgCee+45hgwZQrNmzbh27RpbtmyhZcuWAMyaNYvOnTvTunVrcnNz+d///md6r6qR5KYKyy3Q8eKKQ+gVGNYhlH4tgwC4vVEtNvybSIFOqRK/CIQQwhyD24Sw6JFORea5Ca5iM61/8MEHjB8/nu7du1O7dm1eeukl0tLSbB7HSy+9REJCAmPGjEGj0fDkk08yaNAgNJqym+R69epV6LVGo6GgoIBvv/2WZ599lrvvvpu8vDx69erFunXrTE1kOp2OSZMmcfHiRXx8fBg8eDAffvghYJirZ8aMGZw7dw4PDw969uzJzz//bPmCW4BKsXcDn42lpaXh6+tLamoqPj4+Fj13fn4+69atY+jQoZVazdTog40n+OjP09T2ciXy+d7UvN6p+M/jiYxfvI+WIT788WzPSl/HUixd/urI2e+Bs5cfHPse5OTkEBMTQ8OGDXF3L350pl6vJy0tDR8fn0J9bm7myGvkmVP+ypy7ZcuWPPjgg7z22msWPbclVeYelPaMlef7W2puqqh/41L5dOsZAF67t40psQGo52/o/BZ7NRNFUWSFXiFEtaJRqwhvXMveYVR558+fZ+PGjfTu3Zvc3Fw+/vhjYmJiGDVqlL1Dq/KkQ3EVlK/T88LywxToFYa2DWZI28JVtWH+HqhUkJmn40pG6b33hRBCVE9qtZrFixdz22230aNHD44cOcKmTZuqbD+XqkRqbqqgz7edITo+DT9PLXPvaVPkfTcXDaG+HlxKySY2OZMAb7diziKEEKI6CwsLY+fOnfYOo1qSmpsq5mRiOh9tPg3AnIjWJSYu9fw9ATh/NctmsQkhhBDVgSQ3VYhOr/DCisPk6fT0axHIvR1CS9y3QW1DcnNOkhshhBCiEEluqpBvdsRw6EIK3m4uvHFf21I7Ct/cqVgIIYQQN0hyU0XEXMnkvY0nAHj17pYE+5a+CGb9WtebpZKl5kYIIYS4mXQotiPjXA+JaTl8tvUMuQV6ejatzYNdwso81pTcSLOUEEIIUYgkN3ay/mh8kVk6VcDg1sFmzVtTv5ahWSo5M4/0nHy83R1rsjAhhBCioqRZyg7WH41n4pIDhRIbMKy18urqo6w/Gl/mObzcXKjtZZjYT2pvhBDCuvr06cNzzz1net2gQQMWLFhQ6jEqlYrVq1dX+tqWOo8zkeTGxnR6hblroyltzYu5a6PR6cteFUOGgwshROkiIiIYPHhwse/99ddfqFQqDh8+XO7z7t27lyeffLKy4RUyZ84cOnToUGR7fHw8Q4YMsei1brV48WL8/Pyseg1bkuTGxvbEJBepsbmZAsSn5rAnJrnMcxmbps4ny4gpIUQ1sGU+bHun+Pe2vWN438Ief/xxIiMjuXjxYpH3vv32W7p06UK7du3Kfd6AgAA8PT0tEWKZgoODcXOTyVrLQ5IbG0tKLzmxKe9+pk7FV6TmRghRDag1sOWNognOtncM29Vlr3ZdXnfffTcBAQEsXry40PaMjAyWL1/O448/ztWrV3n44YepU6cOnp6etG3blp9++qnU897aLHXq1Cl69eqFp6cnt99+O5GRkUWOeemll2jWrBmenp40atSImTNnkp+fDxhqTubOncuhQ4dQqVSoVCpTzLc2Sx05coQ777wTDw8PatWqxZNPPklGRobp/XHjxjFs2DDee+89QkJCqFWrFpMmTTJdqyJiY2O599578fLywsfHhwcffJDExETT+4cOHaJv3754e3vj5+dHnz592LdvH2BYIysiIoKaNWtSo0YNWrduzbp16yocizmkQ7GNBXqXPsS7PPvdGA4uNTdCCDtRFMi/6Q8svd7wOk8Dt64IHT4JdHmGREaXB3c8Dzs+hO3vQq8XDO/nmfn7TOsJZgy+cHFxYcyYMSxevJhXXnnFNGBj+fLl6HQ6Hn74YTIyMujcuTMvvfQSPj4+/P777zz66KM0btyYrl27lnkNvV7P8OHDCQoKYteuXcTFxTFjxowi+3l7e7N48WJCQ0M5cuQIEyZMwNvbmxdffJGRI0dy9OhR1q9fz6ZNmwDw9fUtco7MzEwGDRpEeHg4e/fuJSkpiSeeeILJkycXSuC2bNlCSEgIW7Zs4fTp04wcOZIOHTowYcKEMstTXPmMic22bdsoKChg0qRJjBw5kq1btwIwevRoOnbsyKJFi1CpVOzatQut1jDQZdKkSeTl5bF9+3Zq1KhBdHQ0Xl5e5Y6jPCS5sbGuDf0J8XUnITWn2H43KiDY152uDf3LPNeNifyk5kYIYSf5WfDmjdnU1YCfOcdtf9fwU9LrsvxfHLjWMGvX8ePH8+6777Jt2zb69OkDGJqk7r//fnx9ffH19WX69Omm/adMmcKGDRv45ZdfzEpuNm3axPHjx9mwYQPBwcE0bNiQ119/nbvuuqvQfq+++qrp/xs0aMD06dP5+eefefHFF/Hw8MDLywsXFxeCg4NLvNbSpUvJycnh+++/p0YNQ/k//vhjIiIiePvttwkKCgKgZs2afPzxx2g0Glq0aMFdd93F5s2bK5TcbN68mSNHjhATE0NYmGGqku+//57WrVuzd+9ebrvtNmJjY3nhhRdo0aIFer2eoKAgfHx8AEOtz/3330/btm0BaNSoUbljKC9plrIxjVrF7IhWxb5n/BtkdkQrNOqy/yJpcL3mJj4th5x8naVCFEIIh9KiRQu6d+/ON998A8Dp06f566+/ePzxxwHQ6XS89tprtG3bFn9/f7y8vNiwYQOxsbFmnf/YsWOEhYURGnojyQsPDy+y37Jly+jRowfBwcF4eXnx6quvmn2Nm6/Vvn17U2ID0KNHD/R6PSdOnDBta926NRrNjWa+kJAQkpKSynWtm68ZFhZmSmwAWrVqhZ+fH8eOHQNg6tSpPPHEE/Tv35+3336bmJgY077PPPMMr7/+Oj169GD27NkV6sBdXlJzYweD24Sw6JFOTPnpIPm6G/U3wb7uzI5oxeA2IWadx7+GK15uLmTkFnDxWhZNAr2tFbIQQhRP62moRblOr9eTlp6Oj7c36lubpYyMTVEaV0PzVK8XDE1U5b1uOTz++ONMmTKFTz75hG+//ZbGjRvTu3dvAN59913++9//smDBAtq2bUuNGjV47rnnyMvLK19Mpdi1axejR49m7ty5DBo0CF9fX37++Wfef/99i13jZsYmISOVSoVer7fKtcAw0mvUqFH8/vvvrFu3jjlz5rB06VLuv/9+nnjiCQYNGsTvv//Oxo0bmT9/Pu+//z5TpkyxWjxSc2Mng9uE4HN94r0XBjXnpwm3s+OlO81ObMDwsMpwcCGEXalUhuahm3+0nkW3GX92fWJIbPq+AjMvG/67/V3D9pKOKe7HjP42N3vwwQdRq9UsXbqU77//nvHjx5v63+zcuZN7772XRx55hPbt29OoUSNOnjxp9rlbtmzJhQsXiI+/MUfZP//8U2ifv//+m/r16/PKK6/QpUsXmjZtyvnz5wvt4+rqik5Xei18y5YtOXToEJmZN/om7dy5E7VaTfPmzc2OuTyM5btw4YJpW3R0NCkpKbRqdaMlolmzZjz//PNs2LCBu+++u1AfoLCwMJ566ilWrlzJtGnT+PLLL60Sq5EkN3aSW6Djaqbhr4JRXesR3riWWU1Rt5LVwYUQ1YZxVFTfV6D3i4ZtvV80vC5uFJUFeXl5MXLkSGbMmEF8fDzjxo0zvde0aVMiIyP5+++/OXbsGP/5z38KjQQqS//+/WnWrBljx47l0KFD/P3338ycObPQPk2bNiU2Npaff/6ZM2fO8NFHH7Fq1apC+zRo0ICYmBiioqK4cuUKubm5Ra41evRo3N3dGTt2LEePHmXLli1MmTKFRx991NTfpqJ0Oh1RUVGFfo4dO0b//v1p27Yto0eP5sCBA+zZs4cxY8bQu3dvunTpQnZ2NpMnT2br1q2cP3+enTt3cvDgQVq2bAnAc889x4YNG4iJieHAgQNs2bLF9J61SHJjJwnX57rx0Grw86z40gmyOrgQotrQ6wonNkbGBEdv3b6Djz/+ONeuXWPQoEGF+se8+uqrdOrUiUGDBtGnTx+Cg4MZNmyY2edVq9WsWrWK7Oxsbr/9dp599llee+21Qvvcc889PP/880yePJkOHToUmwDdf//9DB48mL59+xIQEFDscHRPT082bNhAcnIyt912GyNGjKBfv358/PHH5bsZxcjIyKBjx46FfiIiIlCpVPz222/UrFmTXr160b9/fxo1asSyZcsA0Gg0XL16lTFjxtCsWTMeeugh+vfvz5w5cwBD0jRp0iRatmzJ4MGDadasGZ9++mml4y2NSlGUsqfCdSBpaWn4+vqSmppq6sltKfn5+axbt46hQ4cWae+81d9nrjDqy900CqjBn9P6VPiaP++J5eWVR+jTPIDFj5Xdq9+aylN+R+Xs98DZyw+OfQ9ycnKIiYmhYcOGuLsXP12FXq8nLS0NHx+fkvvcODBnLz9U7h6U9oyV5/vbOe98FRCfYqi5qePnUanz1JPVwYUQQohCJLmxk7iUbABCfM2b1K8kxiUYLl7LokBnvZ7wQgghRHUhyY2dxKUakpvQStbchPi44+qiJl+nlLpmlRBCCOEsJLmxk7jrzVKhvpVLbtRqFWE1DeeQpikhhBBCkhu7MTZLVbbmBmR1cCGEbTnZOBRhQ5Z6tiS5sQNFUW70ufGrXJ8buGkBTam5EUJYkXH0V1aW/K4R1mGcFfrmpSMqQpZfsIO0nAIy8wzzOVS2WQqgvmmWYqm5EUJYj0ajwc/Pz7RGkaenp2mWXyO9Xk9eXh45OTlOORTa2csPFb8Her2ey5cv4+npiYtL5dITuyY327dv591332X//v3Ex8ezatWqMidOys3NZd68eSxZsoSEhARCQkKYNWsW48ePt03QFhB/vTNxTU8tHq6Vy07hpmYpqbkRQliZccXqkhZhVBSF7OxsPDw8iiQ+zsDZyw+VuwdqtZp69epV+t7ZNbnJzMykffv2jB8/nuHDh5t1zIMPPkhiYiJff/01TZo0IT4+3qqLgVmDJfvbwI1mqdjkLBRFcdp/UEII61OpVISEhBAYGEh+fn6R9/Pz89m+fTu9evVyuEkMzeHs5YfK3QNXV1eL1HjZNbkZMmQIQ4YMMXv/9evXs23bNs6ePYu/vz9gWIujujGOlAqxQJMUQN2anqhVkJWn43JGLoHele/HI4QQpdFoNMX2i9BoNBQUFODu7u6UX+7OXn6oGvegWjUIrlmzhi5duvDOO+9Qp04dmjVrxvTp08nOzrZ3aOVirLmpY4HOxACuLmpTLVCsNE0JIYRwctWqQ/HZs2fZsWMH7u7urFq1iitXrvD0009z9epVvv3222KPyc3NLbSyalpaGmCoNiuuSrUyjOcr67yXrhkSkEBvV4vFUK+mBxevZXMmKY32dbwtcs7yMrf8jszZ74Gzlx/kHkj5nbv8YL17UJ7zVZmFM1UqVZkdigcOHMhff/1FQkICvr6+AKxcuZIRI0aQmZmJh0fRZp45c+Ywd+7cItuXLl2Kp6enxeIvj4+OajiTrmJsUx2dalvm9i87o+bvJDWD6ugZWq969UESQgghypKVlcWoUaPMWjizWtXchISEUKdOHVNiA9CyZUsUReHixYs0bdq0yDEzZsxg6tSpptdpaWmEhYUxcOBAq6wKHhkZyYABA0ptZ3z3+F9ANkP7hNOpnp9Frn1pRwx/bziF1j+UoUPbWeSc5WVu+R2Zs98DZy8/yD2Q8jt3+cF698DY8mKOapXc9OjRg+XLl5ORkYGXlxcAJ0+eRK1WU7du3WKPcXNzw83Nrch2rVZrtQevtHPr9AqJaYYOxWG1vCwWQ6MAQ1PUhZQcu/+Dsua9rS6c/R44e/lB7oGU37nLD5a/B+U5l107FGdkZBAVFUVUVBQAMTExREVFERsbCxhqXcaMGWPaf9SoUdSqVYvHHnuM6Ohotm/fzgsvvMD48eOLbZKqiq5k5JKvU9CoVQR6F026Kqqev2Gum1iZyE8IIYSTs2tys2/fPjp27EjHjh0BmDp1Kh07dmTWrFkAxMfHmxIdAC8vLyIjI0lJSaFLly6MHj2aiIgIPvroI7vEXxHGkVJB3m64aCx3+41z3VzLyic123k7sgkhhBB2bZbq06dPqYtkLV68uMi2Fi1aEBkZacWorMu0GriFJvAzquHmQm0vN65k5BJ7NYu2dX3LPkgIIYRwQNVqnhtHYFx6IcTCyQ3ctICmrA4uhBDCiUlyY2OXTEsvWH4WYVkdXAghhJDkxubijc1SFlp64Wb1/Y0LaErNjRBCCOclyY2NxaVadtHMmzWoLTU3QgghhCQ3NnZj0UzLN0vV85fkRgghhJDkxoZyC3RcyTCsc1XHKh2KDc1SCWk55OTrLH5+IYQQojqQ5MaGElINtTbuWjV+npafubKmpxZvd8Po/thkqb0RQgjhnCS5saEbI6U8UKlUFj+/SqWSEVNCCCGcniQ3NmTNkVJGMmJKCCGEs5PkxobirDjHjZHU3AghhHB2ktzYkDWHgRvdmKVYkhshhBDOSZIbG4qzQbOUrA4uhBDC2UlyY0NxKdavuTFO5HfxWjYFOr3VriOEEEJUVZLc2IiiKKbkJsSKfW6CvN1xdVFToFdMNUVCCCGEM5HkxkbScgrIzDNMrGfNZim1WkV9f1kdXAghhPOS5MZG4q93Jq7pqcXDVWPVaxk7FZ+TEVNCCCGckCQ3NmKL/jZG0qlYCCGEM5PkxkZuLJhp/eTG2KlYam6EEEI4I0lubMRYc1PHip2JjYyrg8dKciOEEMIJSXJjI/HXF80MsUGzlHF18PPJmSiKYvXrCSGEEFWJJDc2csmGfW7q+HmgUavIydeTlJ5r9esJIYQQVYkkNzZiHC0V6mv9ZilXF7Vp/SpZY0oIIYSzkeTGBnR6hYTrzVK2qLkBWR1cCCGE85LkxgauZOSSr1NQqyDQ280m15TVwYUQQjgrSW5swDhSKtjHHReNbW65rA4uhBDCWUlyYwOm1cBt1CQFN0ZMyUR+QgghnI0kNzZg7Exsi2HgRrIEgxBCCGclyY0N3BgGbv2RUkbGifxSs/NJycqz2XWFEEIIe5Pkxgbijc1SNlh6wcjT1cXUeVk6FQshhHAmktzYQFyq7Sbwu5l0KhZCCOGMJLmxgRuLZtquWQpkdXAhhBDOSZIbK8st0HElw7AEQh0b19w0kE7FQgghnJAkN1ZmnJnYXavGz1Nr02vXqyWrgwshhHA+ktxY2c0LZqpUKpte++bVwYUQQghnIcmNlcXZYaSUkbFZKjEtl+w8nc2vL4QQQtiDJDdWFm+HOW6M/Dxd8XF3ASBWRkwJIYRwEpLcWJlxGHiIHWpu4KamKRkxJYQQwklIcmNlxmYpW4+UMpLVwYUQQjgbSW6szLgieIgdmqXg5on8pOZGCCGEc5DkxooURTElN7aendjoRrOU1NwIIYRwDpLcWFFaTgGZ10cp2WO0FEB9f2mWEkII4VwkubGi+OudiWt6avFw1dglBmPNzcVrWaw8cJFdZ66i0yt2iUUIIYSwBbsmN9u3byciIoLQ0FBUKhWrV682+9idO3fi4uJChw4drBZfZdm7SQrgwPlrAOgVmPrLIR7+8h/uePtP1h+Nt1tMQgghhDXZNbnJzMykffv2fPLJJ+U6LiUlhTFjxtCvXz8rRWYZNxbMtE9ys/5oPJOWHiiyPSE1h4lLDkiCI4QQwiG52PPiQ4YMYciQIeU+7qmnnmLUqFFoNJpy1fbYmrHmpo4dRkrp9Apz10ZTXAOUAqiAuWujGdAqGI3atstCCCGEENZk1+SmIr799lvOnj3LkiVLeP3118vcPzc3l9zcXNPrtLQ0APLz88nPz7dobMbzGf976ZqhE2+gt6vFr1WW3THJxF9ftLM4ChCfmsOu00l0a+hvkWveWn5n5Oz3wNnLD3IPpPzOXX6w3j0oz/mqVXJz6tQpXn75Zf766y9cXMwLff78+cydO7fI9o0bN+Lp6WnpEAGIjIwE4OhZDaAiKeY469KPWeVaJdl/RQWU3Yl541+7uXrMsh2MjeV3Zs5+D5y9/CD3QMrv3OUHy9+DrCzzR/1Wm+RGp9MxatQo5s6dS7Nmzcw+bsaMGUydOtX0Oi0tjbCwMAYOHIiPj49FY8zPzycyMpIBAwag1Wp599h2IIchvW+nc/2aFr1WWWrFJPP9qX1l7jewZzeL1tzcXH5n5Oz3wNnLD3IPpPzOXX6w3j0wtryYo9okN+np6ezbt4+DBw8yefJkAPR6PYqi4OLiwsaNG7nzzjuLHOfm5oabm1uR7Vqt1moPnlarRa1xITHd0BxWr7a3zR/y8CaBhPi6k5CaU2y/GxUQ7OtOeJNAi/e5sea9rS6c/R44e/lB7oGU37nLD5a/B+U5V7VJbnx8fDhy5EihbZ9++il//vknK1asoGHDhnaKrHhXMnLJ1ymoVRDoXTS5sjaNWsXsiFZMXHIAFRRJcBRg1t2tpDOxEEIIh2PX5CYjI4PTp0+bXsfExBAVFYW/vz/16tVjxowZXLp0ie+//x61Wk2bNm0KHR8YGIi7u3uR7VWBcaRUsI87Lhr7jLgf3CaERY90Yu7a6GI7F5+TWYuFEEI4ILsmN/v27aNv376m18a+MWPHjmXx4sXEx8cTGxtrr/AqxTTHjR0n8ANDgjOgVTB7YpJJSs8h0Nudk0npzP7tX97ZcJxmQV70axlk1xiFEEIIS7JrctOnTx8UpeSROosXLy71+Dlz5jBnzhzLBmUhxqUX7Dk7sZFGrSK8cS3T6/DGtTiRkM7S3bE8+3MUqyd1p0mgtx0jFEIIISxH1paykkvGpRd8bT+BnznmRLSma0N/MnILeOK7faRmOe+cDEIIIRyLJDdWEn+9Waoq1NwUx9VFzaLRnajj58G5q1lM/ukABTq9vcMSQgghKk2SGyuJq0LNUiWp5eXGl2O64KHV8NepK8z/47i9QxJCCCEqTZIbK7mxaGbVbJYyahXqw/sPtgfg6x0xLN93wc4RCSGEEJVTbea5qU5yC/RcyTBM4FenCtfcGA1tG8Iz/Zry0eZTvLLqKPVr1UCnV0yjq7o29Jf5cIQQQlQbktxYQUKaodbGXavGz7N6zFD5XL+mnEhIY8O/iTz0xS70Nw1iC/F1Z3ZEKwa3CbFfgEIIIYSZpFnKCm7uTKxSVY8aD7VaxZDryYv+ltH5Cak5TFxygPVH4+0QmRBCCFE+ktxYgakzsW/Vb5Iy0ukV3l5ffIdiY64zd200ulszHyGEEKKKkeTGCuJTDf1tQv2qdmfim+2JSS52iQYjBYhPzWFPTLLtghJCCCEqQJIbKzDOThxSjWpuktJLTmwqsp8QQghhL5LcWIGxBqQ6jJQyCvQ2r5bJ3P2EEEIIe5HkxgpuLJpZfRKBrg39CfF1p6TuzyoMo6a6NvS3ZVhCCCFEuUlyY2GKcqPmpirPTnwrjVrF7IhWACUmOLMjWsl8N0IIIao8SW4sLFsHmXk6oHqNlgIY3CaERY90IviWWZVrempZ9EgnmedGCCFEtSCT+FlYimGgFDU9tXi4auwbTAUMbhPCgFbB7IlJ5r+bTvJPTDKjb68viY0QQohqQ2puLOxanqHZpjqNlLqVRq0ivHEtBrQOBuBUYrqdIxJCCCHMJ8mNhV27XnNTnfrblKR5kDcAJxIkuRFCCFF9SHJjYcaamzrVaKRUSZoHG5Kb88lZZF/vRySEEEJUdZLcWJixz02IA9Tc1PZyxb+GK4oCp5Kk9kYIIUT1IMmNhV3LNdTcOEKzlEqlkqYpIYQQ1Y4kNxZ2Lc/w31Df6t8sBTeapiS5EUIIUV1IcmNBOr1CqjG5cYCaG7gpuZERU0IIIaoJSW4s6EpGLjpFhVoFgd5u9g7HIqTmRgghRHUjyY0FGZddCPJxx0XjGLe22fU+N0npuVzLzLNzNEIIIUTZHOMbuIowJjchDtLfBsDLzYW6NQ1NbNI0JYQQojqQ5MaCHDG5AWghTVNCCCGqEUluLESnVzgQmwKAoijo9Ip9A7IgY9OU1NwIIYSoDiS5sYD1R+O54+0/2RCdBMC6o4nc8fafrD8ab+fILEM6FQshhKhOJLmppPVH45m45ICpScooITWHiUsOOESCY0xuTiakoyiOUyMlhBDCMUlyUwk6vcLctdEU93Vv3DZ3bXS1b6JqVNsLF7WK9NwC4m5J4oQQQoiqRpKbStgTk1ykxuZmCoZOxntikm0XlBW4uqhpHOAFwImENDtHI4QQQpROkptKSEo3rxbD3P2qsmamfjcZdo5ECCGEKJ0kN5UQ6G3ekG9z96vKbgwHl5obIYQQVZskN5XQtaE/Ib7uqEp4X4VhzpuuDf1tGZZVGIeDH5cRU0IIIao4SW4qQaNWMTuiFUCRBMf4enZEKzTqktKf6sNYc3P2cib5Or2doxFCCCFKJslNJQ1uE8KiRzoRfMusxMG+7ix6pBOD24TYKTLLquPnQQ1XDXk6PeeuZNo7HCGEEKJELvYOwBEMbhPCgFbB7DqdxMa/djOwZzfCmwQ6RI2NkVqtommQN1EXUjiRmE7T681UQgghRFUjNTcWolGr6NbQn861Fbo19HeoxMZI1pgSQghRHUhyI8wmnYqFEEJUB5LcCLMZa25OygKaQgghqjBJboTZjGtMxSZnkZVXYOdohBBCiOLZNbnZvn07ERERhIaGolKpWL16dan7r1y5kgEDBhAQEICPjw/h4eFs2LDBNsEKanm5UdvLFUWBU4kyU7EQQoiqya7JTWZmJu3bt+eTTz4xa//t27czYMAA1q1bx/79++nbty8REREcPHjQypEKo+bSqVgIIUQVZ9eh4EOGDGHIkCFm779gwYJCr998801+++031q5dS8eOHS0cnShOsyBvdp6+ygnpdyOEEKKKqtbz3Oj1etLT0/H3L3l5g9zcXHJzc02v09IMayPl5+eTn59v0XiM57P0eauSpgGeAByLTy1STmcof1mc/R44e/lB7oGU37nLD9a7B+U5n0pRFMWiV68glUrFqlWrGDZsmNnHvPPOO7z11lscP36cwMDAYveZM2cOc+fOLbJ96dKleHp6VjRcp3U+HT446oK3VuH1Ljp7hyOEEMJJZGVlMWrUKFJTU/Hx8Sl132qb3CxdupQJEybw22+/0b9//xL3K67mJiwsjCtXrpR5c8orPz+fyMhIBgwYgFartei5q4rM3AI6vP4nAP+83IdaNVxN7zlD+cvi7PfA2csPcg+k/M5dfrDePUhLS6N27dpmJTfVslnq559/5oknnmD58uWlJjYAbm5uuLm5Fdmu1Wqt9uBZ89z25qfVUs/fk9jkLM5ezSbYr0aRfRy5/OZy9nvg7OUHuQdSfucuP1j+HpTnXNVunpuffvqJxx57jJ9++om77rrL3uE4JeNMxSdlxJQQQogqyK7JTUZGBlFRUURFRQEQExNDVFQUsbGxAMyYMYMxY8aY9l+6dCljxozh/fffp1u3biQkJJCQkEBqaqo9wndapjWmZMSUEEKIKsiuyc2+ffvo2LGjaRj31KlT6dixI7NmzQIgPj7elOgAfPHFFxQUFDBp0iRCQkJMP88++6xd4ndWxrluZI0pIYQQVZFd+9z06dOH0vozL168uNDrrVu3WjcgYRZjcnMyIR1FUVCpHG8FdCGEENVXtetzI+yvYe0aaDUqMvN0XLyWbe9whBBCiEIkuRHlptWoaRzgBcgK4UIIIaoeSW5EhUi/GyGEEFWVJDeiQmQBTSGEEFVVhZKbCxcucPHiRdPrPXv28Nxzz/HFF19YLDBRtTU3znUjzVJCCCGqmAolN6NGjWLLli0AJCQkMGDAAPbs2cMrr7zCvHnzLBqgqJqMNTdnLmeQr9PbORohhBDihgolN0ePHqVr164A/PLLL7Rp04a///6bH3/8scjwbeGY6vh54OXmQr5OIeZKpr3DEUIIIUwqlNzk5+eb1mvatGkT99xzDwAtWrQgPj7ectGJKkulUtEsyDBiSjoVCyGEqEoqlNy0bt2azz77jL/++ovIyEgGDx4MQFxcHLVq1bJogKLqah5sWJX1REKanSMRQgghbqhQcvP222/z+eef06dPHx5++GHat28PwJo1a0zNVcLxNb9ec3MiIcPOkQghhBA3VGj5hT59+nDlyhXS0tKoWbOmafuTTz6Jp6enxYITVZup5iZRam6EEEJUHRWqucnOziY3N9eU2Jw/f54FCxZw4sQJAgMDLRqgqLqMI6YuJGeTmVtg52iEEEIIgwolN/feey/ff/89ACkpKXTr1o3333+fYcOGsWjRIosGKKou/xquBHgbOpbLfDdCCCGqigolNwcOHKBnz54ArFixgqCgIM6fP8/333/PRx99ZNEARdXWQmYqFkIIUcVUKLnJysrC29vwpbZx40aGDx+OWq3m9ttv5/z58xYNUFRtza7PVHxCam6EEEJUERVKbpo0acLq1au5cOECGzZsYODAgQAkJSXh4+Nj0QBF1SZrTAkhhKhqKpTczJo1i+nTp9OgQQO6du1KeHg4YKjF6dixo0UDFFWbrDElhBCiqqnQUPARI0Zwxx13EB8fb5rjBqBfv37cd999FgtOVH3NgrxRqeBKRh5XM3LtHY4QQghRseQGIDg4mODgYNPq4HXr1pUJ/JyQh6uG+v6enLuaxckkmcxPCCGE/VWoWUqv1zNv3jx8fX2pX78+9evXx8/Pj9deew29XlaIdjY3OhVLciOEEML+KlRz88orr/D111/z1ltv0aNHDwB27NjBnDlzyMnJ4Y033rBokKJqaxHszcboRE4mZhDoau9ohBBCOLsKJTffffcdX331lWk1cIB27dpRp04dnn76aUlunEyzYGOn4gzuCLNzMEIIIZxehZqlkpOTadGiRZHtLVq0IDk5udJBierFOJHfqaQM9IqdgxFCCOH0KpTctG/fno8//rjI9o8//ph27dpVOihRvTSoVQNXjZqsPB3XZMCUEEIIO6tQs9Q777zDXXfdxaZNm0xz3OzatYsLFy6wbt06iwYoqj4XjZrGgV4ci08jLktl73CEEEI4uQrV3PTu3ZuTJ09y3333kZKSQkpKCsOHD+fff//lhx9+sHSMohowNk3FZ9k5ECGEEE6vwvPchIaGFuk4fOjQIb7++mu++OKLSgcmqpcmgV4A/HtNxe6YZMKbBKJRSy2OEEII26twciMEAFvmc+pyFl8dN6wSfy5DzSPf7CPE153vG2+laYAn9J1h3xiFEEI4lQo1SwlhdOpyFk2jP+KR3GWFtj+QsZSm0R9x6rK0UwkhhLAtqbkRFabTK4w504cR+XFM064AYKFuOFM0K5mqXcEH+SNYfqYPO/SKNFEJIYSwmXIlN8OHDy/1/ZSUlMrEIqqZPTHJxKfmsBDDczFNu4LJLqtxUxXwfv4IFuqGQ2oOe2KSCW9cy87RCiGEcBblSm58fX3LfH/MmDGVCkhUH0npOab/X6gbbkpschUXQ2JTzH5CCCGEtZUrufn222+tFYeohgK93U3/P0Wz0pTYuKkKmKJZaUpwbt5PCCGEsDbpcyMqrGtDf0J83XkgYylTtStMTVFTNCuZpl2BCljuNYquDf3tHaoQQggnIsmNqDCNWmUY7h1t6DxsrKkx/neadgURjUPRqPvZMUohhBDORpIbUSlNAzw51eoZlp/pA6k3+tb84DqSe1qGGua5EUIIIWxIkhtROX1n0BTYoVfYdTqJ13/dw/FUNfd2DKXpPa/ZOzohhBBOSCbxExahUavo1tCfLgEKANFxaXaOSAghhLOS5EZYVFgNQ3Jz9FIaOr1i52iEEEI4I0luhEUFekANVw3Z+TrOXM6wdzhCCCGckCQ3wqLUKmgV6gPA4Yupdo5GCCGEM7JrcrN9+3YiIiIIDQ1FpVKxevXqMo/ZunUrnTp1ws3NjSZNmrB48WKrxynKp+315ObIxRT7BiKEEMIp2TW5yczMpH379nzyySdm7R8TE8Ndd91F3759iYqK4rnnnuOJJ55gw4YNVo5UlEebOtdrbi5JzY0QQgjbs+tQ8CFDhjBkyBCz9//ss89o2LAh77//PgAtW7Zkx44dfPjhhwwaNMhaYYpyans9uYmOSyNfp0erkdZPIYQQtlOt5rnZtWsX/fv3L7Rt0KBBPPfccyUek5ubS25urul1WpphiHJ+fj75+fkWjc94Pkuft7owljvEW4u3uwvpOQUcu5RCyxBvO0dmO/IMOHf5Qe6BlN+5yw/WuwflOV+1Sm4SEhIICgoqtC0oKIi0tDSys7Px8PAocsz8+fOZO3duke0bN27E09M6s+dGRkZa5bzVxeZNmwh2VZOeo2bp+h2EBznfkHBnfwacvfwg90DK79zlB8vfg6ysLLP3rVbJTUXMmDGDqVOnml6npaURFhbGwIED8fHxsei18vPziYyMZMCAAWi1Woueuzq4ufxHNTGc2nEOVa36DB3ayt6h2Yw8A85dfpB7IOV37vKD9e6BseXFHNUquQkODiYxMbHQtsTERHx8fIqttQFwc3PDzc2tyHatVmu1B8+a564OtFotHer5A+f4Nz7dKe+FPAPOXX6QeyDld+7yg+XvQXnOVa16eoaHh7N58+ZC2yIjIwkPD7dTRKIk7er6AnAsPo3cAp2doxFCCOFM7JrcZGRkEBUVRVRUFGAY6h0VFUVsbCxgaFIaM2aMaf+nnnqKs2fP8uKLL3L8+HE+/fRTfvnlF55//nl7hC9KUbemB36eWvJ1CicTZKZiIYQQtmPX5Gbfvn107NiRjh07AjB16lQ6duzIrFmzAIiPjzclOgANGzbk999/JzIykvbt2/P+++/z1VdfyTDwKkilUtG2jqH25vClFPsGI4QQwqnYtc9Nnz59UJSSR9IUN/twnz59OHjwoBWjEpbSrq4vf526wpGLqdDN3tEIIYRwFtWqz42oXtrW8QNkjSkhhBC2JcmNsBpjp+KTienk5EunYiGEELYhyY2wmhBfd2rVcKVAr3As3vz5CYQQQojKkORGWI1KpaLt9dqbI7KIphBCCBuR5EZYVTvjiCnpdyOEEMJGJLkRVtW2rh+AYcSUEEIIYQOS3AirMnYqPpWUTlZegZ2jEUII4QwkuRFWFeTjTqC3G3oFouOkU7EQQgjrk+RGWJ2x9kb63QghhLAFSW6E1Rkn85MRU0IIIWxBkhthde1kOLgQQggbkuRGWF2b68PBz1zOICNXOhULIYSwLkluhNUFeLsR6uuOosC/UnsjhBDCyiS5ETYhMxULIYSwFUluhE20uz6Zn4yYsj2dXmHXmav8FnWJXWeuotMr9g5JCCGsysXeAQjn0LaO1NzYw/qj8cxdG018ao5pW4ivO7MjWjG4TYgdIxNCCOuRmhthE8bkJuZKJqnZ+XaOxjmsPxrPxCUHCiU2AAmpOUxccoD1R+PtFJkQQliXJDfCJmrWcCXM3wOQTsW2oNMrzF0bTXENUMZtc9dGSxOVEMIhSXIjbKbd9cn8DktyY3V7YpKL1NjcTAHiU3PYE5Nsu6CEEMJGJLkRNmMaMVWJTsXSOdY8SeklJzYV2U8IIaoT6VAsbKbd9X43hy+lVOh46RxrvkBvd4vuJ4QQ1YnU3AibaX09ubmQnM21zLxyHSudY8una0N/QnzdUZXwvgpDYti1ob8twxJCCJuQ5EbYjK+Hloa1awDlGxIunWPLT6NWMTuiVbHvGROe2RGt0KhLSn+EEKL6kuRG2FRF5ruRzrEVM7hNCHPvaV1ke5CPO4se6SRNeUIIhyXJjbApY3Jz+GKK2cdI59iKS8sxzCnUto4PHloNAN+Mu00SGyGEQ5PkRthURUZMSefYilt7yNAXaUx4A5oEegFwKSXbniEJIYTVSXIjbKp1qA8qFcSl5nA5PdesY7o29CfAy63E96VzbPFOJKRzIjEdV42aga2DqefvCUBscpadIxNCCOuS5EbYlLe7lkbXOxUfLUe/Gy93TbHbpXNsydYeigOgd/MAfD20hF1Pbi5IciOEcHCS3AibK+8K4Z9vP0PMlSzcXdQEeBeuwfGv4SqdY4uhKAprDxuSm4j2oQBScyOEcBqS3AibuzFiKqXMfaPj0vgw8iQAr9/Xln9m9OOnCbfTIcwPgHE9GkhiU4wjl1I5fzULD62G/i0DAUluhBDOQ5IbYXPt6hpHTJVec5NboGPqL1Hk6xQGtgri/k510KhVhDeuxd3tDAnNoQuyTlVxjE1S/VoG4ulqmIi83k3NUnqZE0gI4cAkuRE21yrUB7UKktJzSUwrefj2h5GnOJ6QTq0arrw5vC0q1Y0+NR3r+QEQdeEaiiJf1DfT6xX+d9gwSsrYJAUQ4ueORq0it0DP5QzzOnMLIUR1JMmNsDlPVxeaBnoDJdfe7D2XzOfbzwAwf3hbat8yWqp1qC9ajYorGXlcvCZDm2+2P/Ya8ak5eLu50LtZgGm7VqMm1M8wXF6apoQQjkySG2EXN+a7SSnyXmZuAdN+OYSiwIjOdRnYOrjIPu5aDa1CfAA4EHvNqrFWN8YmqYGtg3HXFh5lZup3c1WSGyGE45LkRtiFqd9NMcPB31h3jNjkLOr4eTCrhPWRADrWqwlA1IUUq8RYHRXo9Kw7YmySKtrRWjoVCyGcgSQ3wi6MI6aOXkot1Gdmy4kklu6OBeDdB9rh464t8RzGfjcHY1OsFmd188/ZZK5k5OFfw5UeTWoXeb9uzeudiq9JciOEcFyS3Ai7aBnig4va0GfGuCjmtcw8XlpxGIDxPRrSvXHRL+ebdQwz1NxEx6WRW6CzbsDVxJpDlwAY0iYYraboP+96MpGfEMIJSHIj7MJdq6Hp9bWOvv4rhl1nrvLq6iMkpefSOKAGLw5uXuY5wvw9qFXDlTydnn/j0qwdcpWXW6Bj/dEEoPAoqZtJs5QQwhlIciPsYv3ReM5d79T69c4YHv7yH34/koBaBR+O7FCkI2xxVCqVNE3d5K+TV0jLKSDIx43bGhS/zpYxuUlMyyUnX2q7hBCOSZIbYXPrj8YzcckBsov5ctUrEFeOVauNnYoPyogp03ILd7UNLXGdLT9PLd5uhkn9Lkq/GyGEg5LkRtiUTq8wd200JU27pwLmro1GZ+YMuh2vL8Pg7DU32Xk6IqMTgeJHSRmpVCrTAprSNCWEcFRVIrn55JNPaNCgAe7u7nTr1o09e/aUuv+CBQto3rw5Hh4ehIWF8fzzz5OTU/JMt6Lq2BOTbOpAXBwFiE/NYU9Mslnnaxfmh0oFl1KySSpltmNH9+fxJLLydNSt6WFad6skMteNEMLR2T25WbZsGVOnTmX27NkcOHCA9u3bM2jQIJKSkordf+nSpbz88svMnj2bY8eO8fXXX7Ns2TL+7//+z8aRi4pISjcvATF3Py83F5pdn+34oBPPd2OcuC+ifWihZSqKU6+WseZGZnYWQjgmuyc3H3zwARMmTOCxxx6jVatWfPbZZ3h6evLNN98Uu//ff/9Njx49GDVqFA0aNGDgwIE8/PDDZdb2iKoh0NvdovuBzHeTnpPPnycMfwxEtCt+lNTNpFlKCOHoXOx58by8PPbv38+MGTNM29RqNf3792fXrl3FHtO9e3eWLFnCnj176Nq1K2fPnmXdunU8+uijxe6fm5tLbu6NRQLT0gxDhvPz88nPz7dgaTCdz9LnrS7MKX/Hut4E+7iRmJZbbL8bFRDs60bHut5m38d2dbz5eS8cjE22+723xzOw/kgceQV6GtWuQZPa7mVeu46PKwCxVzPl34AVOPs9kPI7d/nBevegPOdTKXZcUjkuLo46derw999/Ex4ebtr+4osvsm3bNnbv3l3scR999BHTp09HURQKCgp46qmnWLRoUbH7zpkzh7lz5xbZvnTpUjw9PS1TEFEuh66q+OaksdLw5iYUw6M4vpme9rXMfyzjs+CtQy64qhXe6qpDU3qrjMP5/Jia6BQ1Q+rqGBxW9n1LyoY3ogz3652uOspoxRJCiCohKyuLUaNGkZqaio+PT6n72rXmpiK2bt3Km2++yaeffkq3bt04ffo0zz77LK+99hozZ84ssv+MGTOYOnWq6XVaWhphYWEMHDiwzJtTXvn5+URGRjJgwAC02pKXDXBU5pZ/KNDp30ReX3echLQbtWohvu68MqQFg1oHleu6er3Cx8e3kJFbQJNOPWkZ4l3RIlSarZ+Ba1l5TNu9DVB4bngvGgXUKPOY3AI9bx7aRJ5exe29+1HrlhXXK8PZ/w2A3AMpv3OXH6x3D4wtL+awa3JTu3ZtNBoNiYmJhbYnJiYSHFx0JWiAmTNn8uijj/LEE08A0LZtWzIzM3nyySd55ZVXUKsLdyNyc3PDza3oL2+tVmu1B8+a564OzCn/3R3qMqRdHfbEJJOUnkOgtztdG/qXOD9LWTqE+bHj9BWOxKfTrl7xE9jZkq2egU3H4ynQK7QO9aF5qJ9Zx2i1EOLjTlxqDnHp+QTX9LJ4XM7+bwDkHkj5nbv8YPl7UJ5z2bVDsaurK507d2bz5s2mbXq9ns2bNxdqprpZVlZWkQRGozHMZmvHFjZRARq1ivDGtbi3Qx3CG9eqcGIDztup+OZRUuURJmtMCSEcmN2bpaZOncrYsWPp0qULXbt2ZcGCBWRmZvLYY48BMGbMGOrUqcP8+fMBiIiI4IMPPqBjx46mZqmZM2cSERFhSnKE87mR3DjPTMVJaTn8E3MVgLvaljxxX3Hq+XuyOyZZ5roRQjgkuyc3I0eO5PLly8yaNYuEhAQ6dOjA+vXrCQoy9LuIjY0tVFPz6quvolKpePXVV7l06RIBAQFERETwxhtv2KsIogrocH2F8DOXM0nNysfX0/Grg38/Eo+iQKd6fqaaGHPJAppCCEdm9+QGYPLkyUyePLnY97Zu3VrotYuLC7Nnz2b27Nk2iExUF/41XGlQy5NzV7OIuphC72YB9g7J6iraJAU3T+QnyY0QwvHYfRI/ISzFWRbR1OkV1kRd4sD1/kWDWxff+b400udGCOHIJLkRDsMZOhWvPxrPHW//yTM/R5m2DV/0N+uPxpfrPMZmqfi0HHILiq7OLoQQ1ZkkN8JhGBeMjLqQ4pAj59YfjWfikgNFFh5NSM1h4pID5UpwatVwxdNVg6LApWuyxpQQwrFIciMcRotgH9xc1KRm5xNzJdPm19fpFXbHJLP/iordMcno9JZLsHR6hblro4tdssK4be7aaLOvqVKppFOxEMJhSXIjHIari5q2dXwB2zdNGZuLHvlmH9+f0vDIN/u44+0/y91cVJI9MclFamxupgDxqTnsiUk2+5x1a17vdyM1N0IIByPJjXAopn43F2zXqdiSzUUlOX/VvJqopPSSE6Bb1ZNOxUIIByXJjXAoN0ZMpdjkepZuLipyDkXh98PxvLnuuFn7B3q7m33uev4eADKRnxDC4VSJeW6EsBRjzc3xhHSy8grwdLXuI16e5qLwxrXKde741Gxmrv6XTccMa69p1KoSkyQVEOxrWJ/LXDLXjRDCUUlyIxxKiK8HwT7uJKTlcORiKt0alS+hKC9zm4FK2k+nV4osHqoCftx9nrfXnyAjtwCtRsXEPk1oGliDZ36KAihUU2RckWt2RKtyrc91c7OUoiioVBVf20sIIaoSSW6Ew+lYz48/jiZw8EKK1ZMbc5uB3t94ksvpudzTIdRwzJb5nLqcxZgzfQrV/NT2cmWSeiWpWTlkFIygYz0/3r6/Hc2CvAHQatTMXRtd6JhgX3dmR7RicJvyrS9l7FCcnltASlY+NWu4lut4IYSoqiS5EQ7HlNzYYKbirg39CfF1L7VpCgxNP6//fow31x2jZ9MAxhVcpW/cl4zIj2Mhw037PZz9M49pV/Bf1QPMvac1j9xev1BtzOA2IQxoFVyktqciK6q7azUE+biRmJZLbHKWJDdCCIchyY1wOMZOxQdiU6ze3KJRq5jUtwmvrj5a5D3jVd97oB3Z+XpWHrjIgdgUtp28zDb6MkVzjWnaFQAs1A1nimYl07QreD9/BMs8H2LXLYnNzdcsb/+dktTz9zQlN+2vT4IohBDVnSQ3wuG0CfXFRa3icnoucak51PHzsOr1jCOzXF3U5BXoTdtvbS565Pb6xFzJZOHmk6w8GMdCnaHGZpp2BZNdVuOmKuD9/BGG7em5FeqEXF5h/p7sPXdNOhULIRyKJDfC4Xi4amgZ4sORS6kcjL1m1eTmdFI6qw5eBODnCbeTlZvHxr92M7BnN8KbBBapeWlYuwa9mwey8qBhRe+FuuGmxCZXcTElPFC+OWsqSua6EUI4IpnnRjgk0zpTVp7v5sPIU+gVGNgqiE71a9KtoT+dayt0K6UfzM2dkKdoVpoSGzdVAVM0K4vdz1rCaspwcCGE45HkRjikGzMVp1jtGkcvpfL7kXhUKpg6sJnZxxk7IT9zUx+b5rnf837+CKZpV/CMZiUh5ZyzpqKMc91cuCbJjRDCcUizlHBIxk7FRy6lklegx9XF8nn8h5EnAYhoF0qLYB+zj9OoVXzfeCtNo1fwgbGPDYYmKhUwVbuCiMahaNT9LB7zrYzNUnEpOeTr9Gg18veOEKL6k99kwiE1qOWJn6eWvAI9x+LTLH7+A7HX2Hw8CY1axfMDzK+1MWoa4MmpVs+w3GtUoe3LvUZxqtUzNA3wtFSopQrwcsPNRY1OrxCfYv0+PkIIYQtScyMckkqlomOYH1tOXOZg7DWLD3N+b8MJAEZ0qkvD2jXKf4K+M2gK7ChmhmJb1NgYqdUqwvw9OZ2UQWxylqmZSthGcTNUV2TOIiFEYZLcCIfVsV5NQ3JzIYVxFjzv36ev8PeZq2g1Kqb0a1Kpc1lyzpqKqndTciNsZ/3R+CKzTYdUcLZpIURh0iwlHJapU7EFR0wpisJ7Gw21NqO61jMtYVCdGfvdSHJjO+uPxjNxyYEiM1snpOYwcckB1h+Nt1NkQjgGSW6Ew2of5odKZfjSvpKRa5FzbjmRxIHYFNy1aibdWblam6oiTOa6sSmdXmHu2miKW9/duG3u2ugSV4AXQpRNkhvhsHzctTQJ8AIsM9+NXq/w3gbDCKmx3RvYZB4aW5CaG9vaE5Nc6lpkChCfmsOemGTbBSWEg5HkRji0G/PdVH4RzT+OJhAdn4aXmwtP9Wpc6fNVFZLc2Ja5M0/bYoZqIRyVJDfCoRnnu4mq5GR+Or3CB5GGvjaP39HQoVbQDvM3LE+Rmp1Pana+naNxfObW+DlKzaAQ9iDJjXBoxpqbQxdSK9WHYfXBS5y5nImfp5Yneja0UHRVg6erC7W9DMma9LuxvubB3mg1JQ/3VoHNZqgWwlFJciMcWtNAbzy1ajJyC/hy+1l2nbla7iQnr0DPgs2GvjZP9W6Mt7vWGqHalXQqto2UrDzGfrOHfF3pz+DsiFYy340QlSDJjXBokdEJFOgN///W+uM8/OU/3PH2n+UaavvLvgtcSM4mwNuNseENrBOonUm/G+u7lpnH6K92c+RSKrVquPLq3S0J8S3a9DT7HpnnRojKkkn8hMMyziVy69/IxrlEFj3SqcQvEePMsZdSsnj/+rw2k/s2wcNVY+Wo7aM6JTfVcVbfqxm5jP5qN8cT0qnt5crSCbfTLMibx7o3NJXl6x0xHL6YSmauzt7hClHtSXIjHFJZc4moMMwlMqBVcJEvxuJmjlWrwL+G4zVHGYVVh+Rmy3xOXc5izJk+RWb1/b7xVsN6XH1n2C++ElzJyGX0l7s5kZhOgLcbP03oRpNAb6DwDNWZuToOXzzC+qMJTOrrGHMomaM6Jqui6pPkRjgkc+cSmb/uGHe1C6FFsA8erpoSa3v0CjzzUxRajdohmwzqVYM+N6cuZ9E0+iNG5MexkOGm7Q9kLKVp9ArDgqN2jA8MX9S7Y5LZf0VFrZhkmgT58ujXuzmVlEGgtxs/PXk7ja/PvXSrga2DeHX1EY5cSuVCcpYp4XRksgSFsBZJboRDMneOkK92xPDVjhjUKsNK4nGpOcXW9hiVVNtT3RmTm4vXstHplSpXPp1eYcyZPozIj2OadgUAC3XDmaJZyVTtCj7IH8HyM33YYcfYC39Ra/j+1D40ahU6vUKwjzs/PXl7qYus1vZy47YG/uyOSWbDvwk80bOR7YK3g8o0GwtRFulQLBySuXOEtKvrS20vV/QKnL2SRU6+vsR9HXnm2CAfd1w1agr0CvGp2fYOpwhjTdxC3XDezx/BNO0KTriNYZp2Be/nj+Aj3fBSPxudXmHXmav8FnWpQiPmylLSWlHG6zzdp7FZq8cPaRN8/XwJFo2vqpElKIS1SXIjHFLXhv6E+LpT0t/wxrlEVj3dg32vDmDPK/14qrd5sw474syxGrWKujUNk/lVxX43N9/zhbrh5CouuKkKyFVcWKi70US19UQSGbkFhY5dfzSeO97+k4e//Idnf46q0Ii50pT2RW20aNsZs76ojTUV+2OvkZTmeM+ZkSxBIaxNkhvhkDRqFbMjWgEUSXCMr2+eSyTQ253ezQLMOrejzhxblee6ufmeT9GsNCU2bqoCpmhWmt77fPtZOszdyP2L/ub9jSdYsOmk1VffLuuLGsz/og72dadjPT8UBTb867i1N7IEhbA2SW6EwxrcJoRFj3Qi+Ja5RIJ93Yttzze3tsdRZ441LsNQFWtujJ/NM5qVpqao5rnfm5qopmhW4qHVULemOwV6hf3nr7Hwz9Ms2HTK6k0flv6iNjZN/eHATVOyBIWwNulQLBza4DYhDGgVbNZQU2Ntz8QlB1BBoS/F4mp7HM2NEVNVr8+NRq0yDPeONiQ2xqaohbrhqIBp2hXc0yqUpg++xoXkLP4+c4U1UXHsPHO1xHPe3PRhHI5dEZb+oh7SJoQ31x1nd0wyyZl5+DvQOmZGxmQ1oYQO/CoMf4Q46h8Swvqk5kY4PONcIvd2qEN441qlJiflre1xJFV9Ir+mAZ6s9B1bqI8NwHKvUYZh4AGG+MP8PRl5Wz0evC3MrPNWtunj4rXS71d5a/zC/D1pHeqDTq8QGe2YtTc3NxuXxJH/kBDWJzU3QtyiPLU9jqQq97kBKOj1Em/u3Azk8dKg5oTW9Ljps+lXZH9rN30oisKnW8/w7oYTpm2WqvEb0iaYf+PS+ONoAiNvq1eh+Kq6wW1CmNCzIV/8FVPkvfF3NHToPySE9UnNjRDFKE9tj6MwJjdXM/OKjDiqCv45m8yVjDzDyuy9GpX52ZTVhwoMM0+7lLJCd0l0eoWZvx01JTb/6dWIT0dZrsZv8PV+NztPXyE1O7/c8VUXqdmG52xIm2D++1AHHuxcFzAMhc/Jl2UoRMVJciOEAMDHXUtNT8MSE1Wx9mbtoTjA0CdFqyn7V1dpI+aM9AqM+vIflvxzHkUxr2Nxdp6O//ywnyX/xKJSwZyIVswY2pKh7ULY8dKdLBnfhTFNdSwZ34UdL91ZoRqIJoHeNAn0Il+n8OfxxHIfXx0oisK2k5cBeLhrPe7tUIe597Yh2MedSynZLP77nH0DFNValUhuPvnkExo0aIC7uzvdunVjz549pe6fkpLCpEmTCAkJwc3NjWbNmrFu3TobRSuE46qq/W5yC3T8cX3Y9j3tQ80+rqQ+VCG+7nz4YHsGtw4mX6fw6uqjvLDicJm1BcmZeYz66h82HUvE1UXNp6M6Ma5HQ9P7GrWKbg396VxboVslmzJNo6aOOGa/m+MJ6SSk5eCuVZv6I3m4apg+qDkAn/x5muTMPHuGKKoxu/e5WbZsGVOnTuWzzz6jW7duLFiwgEGDBnHixAkCAwOL7J+Xl8eAAQMIDAxkxYoV1KlTh/Pnz+Pn52f74IVwMGH+nhy6mFrlam7+OnmFtJwCAr3dyj2CprQ+VMM61uGzbWd5d8NxVuy/yPGENBaN7kyYv2eRBR2DfdwZ/91eYq5k4uuh5auxXbitgfVG8wxuE8zCP0+z7eRlsvIK8HS1+69ri9p6wlBrE96oFu5ajWn78I51+GZHDNHxafx300nm3tvGXiGKaszu/1o++OADJkyYwGOPPQbAZ599xu+//84333zDyy+/XGT/b775huTkZP7++2+0WkMVeoMGDWwZshAOq6rW3Kw9bGiSuqtdSIVqQ25efftmKpWKiX0a066uL1N+OsjRS2lEfLyDR2+vz4r9F4usDK9XoI6fB9+Nv820sre1tArxoZ6/J7HJWWw9cZmhbSvewbYqrry99UQSAH2aF/4jVq1W8epdLRn11W5+3B3LmO4NSlxsVIiS2LVZKi8vj/3799O/f3/TNrVaTf/+/dm1a1exx6xZs4bw8HAmTZpEUFAQbdq04c0330Snk85nQlRWVUxusvN0REYb+p2Up0mqPHo0qc3aKXfQrq4vKVn5LPzzdJFZh41z/T1zZxOrJzZgSLwqPaHflvmc+mVmsctPnPplJmyZb8GIzZeek8/+89cA6NO86Mzg3ZvUpl+LQAr0Cm/9cdzW4QkHYNeamytXrqDT6QgKCiq0PSgoiOPHi3+gz549y59//sno0aNZt24dp0+f5umnnyY/P5/Zs2cX2T83N5fc3FzT67S0NADy8/PJz7fsKATj+Sx93urC2csP1f8ehPoaJoyLvZpZoTJYo/wbjyaQlaejbk0PWgfXsNq9Dazhwg/jOnP721vJLmEBVRWwYPNJ7m1f8srwlrwH/VvU5vPtZ/nzWCIZWTm43dR8Y46ziRk0P/4xI/LjWMiN+YEeyFhK0+gVnGgxmUZ2+D247XgiBXqFBrU8CfVxLXbf6QOasPXkZSKjE9lxMpFu1WRCv+r+O8ASrHUPynM+lWLuEAEriIuLo06dOvz999+Eh4ebtr/44ots27aN3bt3FzmmWbNm5OTkEBMTg0Zj+If+wQcf8O677xIfX3SdmDlz5jB37twi25cuXYqnp6cFSyNE9Xc1B+YddEGjUnivm46qMAL+q+NqjlxT07+Onoh6Ja/abgmnUlV8HF12AjG5lY6mvtb/1alXYO4BDSl5KiY019HG3/xrGo99VLfKtGTFQt1wpty0hMUPmvuY3cn2n/PPZ9TsSlLTK1jP/Q1L/kx/OatmZ6KaujUUprWtGs+jsJ+srCxGjRpFamoqPj4+pe5r15qb2rVro9FoSEwsPNQxMTGR4ODgYo8JCQlBq9WaEhuAli1bkpCQQF5eHq6uhacqnzFjBlOnTjW9TktLIywsjIEDB5Z5c8orPz+fyMhIBgwYYOoP5EycvfxQ/e9BgU7PG4c2o9NDl553EuxTvgnuLF3+9Jx8pu/ZCig8O6wHLYKt2xy09nA8RB8pc79GrTswtF3xfWAsfQ8Ocpzv/4nlimcYQ4ea37l2d0wyKf/sM9XYTNOuYLLLatxUBTeWsNBBQKvbLVorUlb5FUXhzfe2A7mMHdiFXk1rl3iubhm59Fuwg4uZOnR1OnB3B+s0S1pSdf8dYAnWugfGlhdz2DW5cXV1pXPnzmzevJlhw4YBoNfr2bx5M5MnTy72mB49erB06VL0ej1qtaHL0MmTJwkJCSmS2AC4ubnh5uZWZLtWq7Xag2fNc1cHzl5+qL73QKs1dJiNTc4iPi2fsFoVSyYsVf7NhxLI1yk0DfSiTd2aqFTW/dM9xK+G2fuVVT5L3YO72oXy/T+x/Hn8Mqg1Zs3xA3A168ZEjAt1w02JTa7iUmgJi6tZBVZ5Vksq//GENBLTcnFzUdOjaSDaUpragmtqmdS3Ce+sP8EHm05zd4e6hUZWVWXV9XeAJVn6HpTnXHaf52bq1Kl8+eWXfPfddxw7doyJEyeSmZlpGj01ZswYZsyYYdp/4sSJJCcn8+yzz3Ly5El+//133nzzTSZNmmSvIgjhUKpSp+K1hw1NzRHtQ62e2EDVXBm+SwN/anu5kpqdz65SFgK91c3LSkzRrDQlNm6qAqZoVha7ny2YhoA3rmVWojK+R0Pq+HkQl5rD1zuKLtUgRHHsntyMHDmS9957j1mzZtGhQweioqJYv369qZNxbGxsob40YWFhbNiwgb1799KuXTueeeYZnn322WKHjQshyi+siiQ3VzNy2Xn6CmBIbmyhtFmN7bUyvEatYkCr8o+a6trQkBTd3Memee73vJ8/gmnaFTyjWWnzRA1g2/Xkpk+zoqOkiuOu1fDC9Yn9Pt1ymsvpuWUcIUQVmOcGYPLkySU2Q23durXItvDwcP755x8rRyWEc6pXRRbQXHc0AZ1eoW0dXxrWNq+5yBKMsxrPXRtdaDh4sK87syNa2WVBxyFtgvlpTyyR0Qm8PqyNWcnVxWtZjCv4hck3dSYGTP+dpl1BROPQYhcdtZaM3AL2nU8Gis5vU5p72ofyzc4YDl9MZcGmk7xxX1trhSgcRJVIboQQVUdFm6V0eoXdMcnsv6KiVkwy4U0CK1XDYVxLKqK97ZOJqrYyfHjjWvh6aLmSkcfec8nc3qjohIQ3S0rP4dGv9zC8oIAv3R/mF9cRkHajxmOhbjg+Hi48XtvD2qEXsvP0FfJ1hiHgDcqRsKrVKl4Z2pKRX/zDT3tiGde9AU2DrD/XUFWc/FCYR5IbIUQhFUlu1h+Nv6mmQ8P3p/YRUomajvjUbPaeM/yFf3c7+4yQKWlWY3vQatT0bxnErwcusv5oQqnJTVpOPmO/2UtschYr/cewYmI442u4mb6kPbUapv4SxRsZ9+Dt1ZaHbFgOY3+b8tTaGHVrVIuBrYLYGJ3Im+uO8WSvxtZLOrbM59TlLMac6VOo9i7E153vG2+laYAn9J1R8vHC7uze50YIUbUYk5vL6blk55U98/f6o/FMXHKgyIy+Cak5TFxygPVHi84/VZbfD8ejKHBbg5qE+tm2dqGqMs5WvOHfBPT64ue7ycnXMeG7fRyLT6O2lys/PN6VQG93U6J2b4c6DGgdzHMDDH1Y3tt4gvQc20w2pygK264vudC7mFmJzfHykBaoVbDlxOUiMy5X5DkryanLWTSN/ogRGUsLbTdMfvgRpy5brslWp1fYdeYqv0VdYteZq+hK+GztoSrHVhapuRFCFOLrqcXH3YW0nAIuXMuiWSnV/zq9wty10RT3K0/B0Al37tpoBrQqeUbf4qy53iRlreUWqqM7mtamhquG+NQcDl1MoWO9moXe1+kVnvs5it0xyXi5ubD4sa7Ur1V808+jt9dnyT/nibmSyadbz/DS4BZWj/9UUgZxqTm4uagJL6NZrSQnE9Mp7vvVmEgveqRTpftE6fQKY870YUR+HNO0KwBMkx9O1a7gg/wRLD/Thx16pdK1RYVrPA0qU+NpSVU5NnNIzY0QogjTiKmrpf+FuicmuUiNzc0UID41hz0xyWZf+9yVTA5fTEWtgiGVWCzS0bhrNdzZ0jCKdP0to6YUReHV1UdZ/28Crho1X4zpTJs6viWey9VFzStDWwLw9V8xNuk8blwo8/ZG5g0Bv5UxkS6OMd+Zuza60rULxmd6oW64aWTZCbcxphFnH+mGl/uZLo41ajwtpSrHZi5JboQQRZhGTF0r/UsvKb3kxKYi+wH87/oK4D2a1Ka2V9EJOJ2ZsWlq1cFL/HbwRlPBh5En+WlPLCoV/PehDnRvXPKsv0b9WgbSo0kt8nR6myxOeaO/TcWapKyRSBfn5md1oW64aW6gWyc/LM8zfauyajzBMolaRVQ4ti3zYds7xZ902zs2X6RVkhshRBHmdCpWFIVzVzLNOl95JopbYxolJU1St8orMKzDlJSey7PLDP1NOs7byEd/ngbg9WFtzK7tUqlUvHpXK9Qq+P1IvKkDtzVk5BaYzl+RzsRgnUS6OLaY/NBWidrNzO0/U+HY1BrY8kbRBGfbO4btatvOLC19boQQRYSVMdfNkYupvPZ7tFm/fIN9zJ8o7kRCOicTM3DVqBnUuvj15ZzV+qPxPL8sqsj2tBzDMgt3twthdLf65TpnyxAfRt5Wj5/2xDJvbTS/TeqB2gpDnf++PgS8fi3PCs9ZZG4yUdkZl7s29MfLTcNjBcuLXXBUBSz3GlWpyQ9tlagZmdN/RlEUjl5K4+sdZysWW+8XDf/d8gZqnQ5ohfqv92D7W9D3lRvv24gkN0KIIupeH6F09FIqu85cNQ21TUjN4Z0Nx1l54BIA7lo1dzYPNM2cW9zfgj4eLuTr9GjM+MttzSHDeXs3D8DXw7nX5blZaU0FRvvPX0NXgU6uUwc0Y+2hOI5cSmXVwUvc37lu5YItxtaT5ZuVuDjGpTESUnNKvA+WmHF564mkIokNWHbyQ1slanCj/8yt98zYf+aFQc1Jyc5n3ZF4Ll7LNvu8xcZ2PYHRbHmDu1UuaJQCuyQ2IM1SQohbrD8azwsrDgOQkJbLw1/+Q/e3NjN56QH6vrfVlNjc17EOf07rw6ePdGbRI50I9i38y662lyvuLmpOJmbw1JL95BaUPqxcURTWHrqxlpS4oaymAqh4M0aAtxuT+jYB4J0Nx8nKKyjjiPIxDAE3JDcVHQIOpS+NYfRw13qVGsEUezWL55dFoVHp+dV3LCu8RhV6f6FuOPsaTjTMc1MJxkStNJZI1MrqP6MA72w4wRfbz3LxWjYeWg1D2wTj56mt+PpqvV9E0biiUQpQNK52SWxAkhshxE2Mf+Vdzii8fk9iWi7/OxxPdr6OLvVrsnpSDz4c2cE0B83gNiHseOlOlozvwpimOpaM78Lu/+vPD090w0OrYeuJyzzz00EKdPoSr33oYiqxyVl4aDX0b1mxfhmOytrNGI/1aECYvweJabl8ts28ZglznU7K4FJKNq4uasIbld3RuTTGpTFuTaQ9tIavsu93nSOhjCSwJDn5Op5asp+0nAK2hT5BxJQF7HjpTn6acDv/fagDtzcyfJm/nzsMpU/l1jLUqFWM696g1H0eub1yiRqYlxQDdG9ci88e6cSBmQP49JHOvDXcsLxFhdZX2/YOKl0eOpULKl1eyZ2MrUySGyEEYF7TR01PLT8/eTsdwvyKvKdRq+jW0J/OtRW6XW/Guq2BP1+O6YKri5oN/yYybfmhEjsyGpdb6N8qCE9XaTG/mbWbMdy1GmYMMQwN/2L7GeJTzW+eKItxlFS3hv54uFa+U6kxkTYmHT9NuJ29rwygRbA3VzLyzKolvJWiKMxcfZTo+DT8a7jy6ehOuLqoC01++N4D7XF1UbPr7FUioxMrVQadXmHdEUMtpbu28Newx/Vh8sv2XiQjt3K1aOYmuyNvC2NwmxDT51NSEhns6176XELXOw/rer3M/zp8g67Xy8V3MrYB+Q0ihADM+yvvWlY+e89dK9eyBHc0rc2i0Z34zw/7+S0qDg+thjfva1uo46per5iGgEe0k7ltblVWfxMVhi+eyjRjDGkTTNcG/uw5l8w760/w4cgOFT7XzbaeNMxvU9FRUsUpbmmMLx7twt0L/yLqQgpz1kQzf7j5i2v+vPcCy/dfRK2ChQ93JMS36KzYdWt68sQdDfl06xneXHeMPs0DcXWpWP3Az3tjOXQxFW83FzY+34tzV7NMS0m0CPHm7o92EJucxev/i+at+9tV6BpQuaS43OurGUdF9X0FfffnYd069D2no9FcH0UFNm2ikpobIQRg3aaPfi2D+O9DHVGrDF8k8/4XjaLc+Jrecy6ZxLRcvN1dKtUvw1GV1t/ErKYCM6hUKmbe3QqVyjCPTtSFlAqfyygzt4C9MdeAis9vY656tTz56OGOqFTw055Yft4Ta9Zxhy+mMPu3fwGYNrA5PZqU3HT2dN8m1PZy49zVLL7fda5CcV7NyOWd9ScAmDqwGSF+HqbaofDGtajp6cr7D7ZHdf3fSmVqibo29MevlI75ZfWfubnmKrxxrdKfL72u+M7DvV80bNeXrzatsiS5EUIA1m/6uKtdCO89YPilvfjvc7y9/gQFOj27zlxl4eZTAAxqFYSbi23nw6guKtxUUA5t6/oyvKNhtNS8tf+y68yVSq0rtOvMVfJ0esL8PWhUwSHg5dGneSDTBjQDYNZv/3Iw9lqp+1/LzGPikgPk6fT0bxnExN6NS93fy82FFwYZzv/fzadIzswrd4xv/XGc1Ox8WoX48OjtxQ/dv71RLSb0bATAy78e5nJ6brH7lWX7ycuklbB2mKWSYpO+M0qumen9os0XGpVmKSEEYJumj+Gd6pKdr+OVVUf5bNsZlvxzvlC/gj9PXGb90fhqsXaNPZS7qaACXhzcnLWH4jgQm8LDX+42ba/IukKmJqlmgahUlp8/pzhP92nC4YupbIxOZOKSA6ydcgcB3kVnutbpFZ5bFsWllGzq1/Lk/QfbmzXHz4jOYXz393mi49P4MPIkrw1rY3Zse88ls3z/RQBeG9YGF03J9QvTBjZj+8nLHE9IZ8bKw3w5pku57uHec8k8tWQ/egW6NqhJbHI2CWk3al2Dq9E6URUhNTdCCMA2TR8Ao7vVZ8T1uVRu7TBp/Eu6OqxdYy/laiqogIOx18grZlRbedcVUhSl0ksuVIRareL9B9vTOKAGCWk5TFp6gPxiyrPwz1NsO3kZd62aRaM7mz2vkkZtaL4DWLonlpOJ6WYdV6DTM3P1UQAeui2MzvVrlrq/m4uGD0d2wFWjZtOxJJbtvWDWdQCi49IYv3gvuQV6+rUI5McJt7Pz5cKdsHe8dKfDJjYgyY0Q4ia2aPrQ6RV2nr5S7Hv2XlfH2VlyccqzV7K4eC0bV426XB3QLcHbXcvnj3bBy82FPTHJvLnuWKHlBxZtPc2CTYam0DeGtaVVqE+5zh/euBaDWgeh0yu8/vsxs45Z/Pc5jiekU9NTa/Yq7C1DfJh+vRls3v+izVruJOZKJmO+2UN6TgFdG/jzyehOaDVqqyfFVY00SwkhCrF200d51q6x9Zeis7PkZ7P9lCGB7dbI3y5D+5sEevH+g+35zw/7+XbnOVYeuERqduH+Jz2b1q7wjMwzhrTkz+NJbD95mS0nkuhbymiwhNQcPow8CcBLg1tQs4ar2dd5/I5GbD6WxO6YZKb+EsUv/wkvsTkrITWHR77azZWMXFqF+PDVuC4VWoHdEUjNjRCiCGv+lWfrdXWE+Sz52Ww7aUhueldiyYXKGtQ62LSS+q2JDcCOU1cq3ATaoHYN00R8r/8vutimL6PXfo8mM09Hx3p+PNglrFzX0VxvZvN2c+FAbAqfbTtT7H7XMvN49OvdXErJpkEtT74b3xUfd+ddwkSSGyGETdlyXR1RPpb6bHJ1huH9YNn5bcpLp1c4GJtS6j6VaQKdfGdT/Gu4cuZyJkt3Fz/0/K9Tl/n9cDxqlWHV9oosTFq3pidz720NwIJNpzgYe63QCt9p2fk8tngvp5IyCPZx54fHuxXbidqZSLOUEMKmbDEqS1SMOYtTAvyyL5ZWIT74ehZfM3AqTUW+TqFuTQ8aB1h/CHhJ9sQkFxohdKvKNoH6emh5fkAzZq4+yoebTjKsQx1uviW5BTpmXZ9DZ0x4A1qH+pb7Gkb3dazDpmOJrDuSwIjPdhVKyFw1avJ0evw8tfzweFfC/Cu39pUjkJobIYRN2WpUlig/cz4bFbDqYBwDF2xjy/GkYs9z7Jph7z7NA2w2BLw4tmgCffi2MJoFeZGSlc9/r8/XZPTFtrPEXMkkwNuNqQObVfgaYJhk8c7rtWC31jQZR7f9p1djmgZ5V+o6jkKSGyGEzdliVJaomNI+m88e6cSKid1pWLsGiWm5PLZ4Ly+uOGSaKE6nV/jn7FWirhoSml5N7DvbtC2aQF00al69y5AQfvd3DKuj4th/RcXaw3Es/NOQ7Lx6V8tK93/R6RXev94puSTf7zonowyvk2YpIYRd2GJCOlExZX02657pyXsbT/DNzhh+2XeRHaeuMKJLXZbvu3h9tJVhv5lrjqJHsVuyaqsm0F7NAmhTx4ejl9J44dejgIbvTxnmtGkW5MU97UMrdX4wb+03GWV4g9TcCCHsxtnm3qhOSvtsPFw1zLy7FcueDKd+LU/iUnP4aPPpIl++SWm5dp2U0VZNoOuPxnP0Ulqx751MzGDDvwmVOj/IKMPykuRGCCFEhXRt6M//ptyBp2vxc6lUhUkZrd0EWtrEh2BIoixRfhllWD7SLCWEEKLCjl5KIyuv5BWfq8KkjNZsArXVpJQyyrB8JLkRQghRYdWlucTYzGZptiq/sYlt4pIDqKBQgiOjDIuSZikhhBAV5uzNJbYsv4wyNJ/U3AghhKgwZ28usXX5ZZSheaTmRgghRIU5+6SM9ii/jDIsmyQ3QgghKsXZm0ucvfxVkTRLCSGEqDRjc8mu00ls/Gs3A3t2I7xJoNPUKjh7+asaSW6EEEJYhEatoltDf64eU+jmhP1AnL38VYk0SwkhhBDCoUhyI4QQQgiHIsmNEEIIIRyKJDdCCCGEcCiS3AghhBDCoUhyI4QQQgiHIsmNEEIIIRyKJDdCCCGEcCiS3AghhBDCoTjdDMWKYli3NS0tzeLnzs/PJysri7S0NLRarcXPX9U5e/lB7oGzlx/kHkj5nbv8YL17YPzeNn6Pl8bpkpv09HQAwsLC7ByJEEIIIcorPT0dX1/fUvdRKeakQA5Er9cTFxeHt7c3KpVl1/1IS0sjLCyMCxcu4OPjY9FzVwfOXn6Qe+Ds5Qe5B1J+5y4/WO8eKIpCeno6oaGhqNWl96pxupobtVpN3bp1rXoNHx8fp32oQcoPcg+cvfwg90DK79zlB+vcg7JqbIykQ7EQQgghHIokN0IIIYRwKJLcWJCbmxuzZ8/Gzc3N3qHYhbOXH+QeOHv5Qe6BlN+5yw9V4x44XYdiIYQQQjg2qbkRQgghhEOR5EYIIYQQDkWSGyGEEEI4FEluhBBCCOFQJLmxkE8++YQGDRrg7u5Ot27d2LNnj71Dspk5c+agUqkK/bRo0cLeYVnV9u3biYiIIDQ0FJVKxerVqwu9rygKs2bNIiQkBA8PD/r378+pU6fsE6wVlFX+cePGFXkmBg8ebJ9grWD+/PncdttteHt7ExgYyLBhwzhx4kShfXJycpg0aRK1atXCy8uL+++/n8TERDtFbFnmlL9Pnz5FnoGnnnrKThFb3qJFi2jXrp1porrw8HD++OMP0/uO/PlD2eW39+cvyY0FLFu2jKlTpzJ79mwOHDhA+/btGTRoEElJSfYOzWZat25NfHy86WfHjh32DsmqMjMzad++PZ988kmx77/zzjt89NFHfPbZZ+zevZsaNWowaNAgcnJybBypdZRVfoDBgwcXeiZ++uknG0ZoXdu2bWPSpEn8888/REZGkp+fz8CBA8nMzDTt8/zzz7N27VqWL1/Otm3biIuLY/jw4XaM2nLMKT/AhAkTCj0D77zzjp0itry6devy1ltvsX//fvbt28edd97Jvffey7///gs49ucPZZcf7Pz5K6LSunbtqkyaNMn0WqfTKaGhocr8+fPtGJXtzJ49W2nfvr29w7AbQFm1apXptV6vV4KDg5V3333XtC0lJUVxc3NTfvrpJztEaF23ll9RFGXs2LHKvffea5d47CEpKUkBlG3btimKYvi8tVqtsnz5ctM+x44dUwBl165d9grTam4tv6IoSu/evZVnn33WfkHZQc2aNZWvvvrK6T5/I2P5FcX+n7/U3FRSXl4e+/fvp3///qZtarWa/v37s2vXLjtGZlunTp0iNDSURo0aMXr0aGJjY+0dkt3ExMSQkJBQ6Jnw9fWlW7duTvVMbN26lcDAQJo3b87EiRO5evWqvUOymtTUVAD8/f0B2L9/P/n5+YWegRYtWlCvXj2HfAZuLb/Rjz/+SO3atWnTpg0zZswgKyvLHuFZnU6n4+effyYzM5Pw8HCn+/xvLb+RPT9/p1s409KuXLmCTqcjKCio0PagoCCOHz9up6hsq1u3bixevJjmzZsTHx/P3Llz6dmzJ0ePHsXb29ve4dlcQkICQLHPhPE9Rzd48GCGDx9Ow4YNOXPmDP/3f//HkCFD2LVrFxqNxt7hWZRer+e5556jR48etGnTBjA8A66urvj5+RXa1xGfgeLKDzBq1Cjq169PaGgohw8f5qWXXuLEiROsXLnSjtFa1pEjRwgPDycnJwcvLy9WrVpFq1atiIqKcorPv6Tyg/0/f0luRKUNGTLE9P/t2rWjW7du1K9fn19++YXHH3/cjpEJe3nooYdM/9+2bVvatWtH48aN2bp1K/369bNjZJY3adIkjh496vD9zEpSUvmffPJJ0/+3bduWkJAQ+vXrx5kzZ2jcuLGtw7SK5s2bExUVRWpqKitWrGDs2LFs27bN3mHZTEnlb9Wqld0/f2mWqqTatWuj0WiK9IJPTEwkODjYTlHZl5+fH82aNeP06dP2DsUujJ+7PBM3NGrUiNq1azvcMzF58mT+97//sWXLFurWrWvaHhwcTF5eHikpKYX2d7RnoKTyF6dbt24ADvUMuLq60qRJEzp37sz8+fNp3749//3vf53m8y+p/MWx9ecvyU0lubq60rlzZzZv3mzaptfr2bx5c6G2R2eSkZHBmTNnCAkJsXcodtGwYUOCg4MLPRNpaWns3r3baZ+JixcvcvXqVYd5JhRFYfLkyaxatYo///yThg0bFnq/c+fOaLXaQs/AiRMniI2NdYhnoKzyFycqKgrAYZ6B4uj1enJzcx3+8y+JsfzFsfnnb7euzA7k559/Vtzc3JTFixcr0dHRypNPPqn4+fkpCQkJ9g7NJqZNm6Zs3bpViYmJUXbu3Kn0799fqV27tpKUlGTv0KwmPT1dOXjwoHLw4EEFUD744APl4MGDyvnz5xVFUZS33npL8fPzU3777Tfl8OHDyr333qs0bNhQyc7OtnPkllFa+dPT05Xp06cru3btUmJiYpRNmzYpnTp1Upo2bark5OTYO3SLmDhxouLr66ts3bpViY+PN/1kZWWZ9nnqqaeUevXqKX/++aeyb98+JTw8XAkPD7dj1JZTVvlPnz6tzJs3T9m3b58SExOj/Pbbb0qjRo2UXr162Tlyy3n55ZeVbdu2KTExMcrhw4eVl19+WVGpVMrGjRsVRXHsz19RSi9/Vfj8JbmxkIULFyr16tVTXF1dla5duyr//POPvUOymZEjRyohISGKq6urUqdOHWXkyJHK6dOn7R2WVW3ZskUBivyMHTtWURTDcPCZM2cqQUFBipubm9KvXz/lxIkT9g3agkorf1ZWljJw4EAlICBA0Wq1Sv369ZUJEyY4VLJfXNkB5dtvvzXtk52drTz99NNKzZo1FU9PT+W+++5T4uPj7Re0BZVV/tjYWKVXr16Kv7+/4ubmpjRp0kR54YUXlNTUVPsGbkHjx49X6tevr7i6uioBAQFKv379TImNojj2568opZe/Knz+KkVRFNvUEQkhhBBCWJ/0uRFCCCGEQ5HkRgghhBAORZIbIYQQQjgUSW6EEEII4VAkuRFCCCGEQ5HkRgghhBAORZIbIYQQQjgUSW6EEEII4VAkuRFCVBmXL19m4sSJ1KtXDzc3N4KDgxk0aBA7d+4EQKVSsXr1avsGKYSo8lzsHYAQQhjdf//95OXl8d1339GoUSMSExPZvHkzV69etXdoQohqRGpuhBBVQkpKCn/99Rdvv/02ffv2pX79+nTt2pUZM2Zwzz330KBBAwDuu+8+VCqV6TXAb7/9RqdOnXB3d6dRo0bMnTuXgoIC0/sqlYpFixYxZMgQPDw8aNSoEStWrDC9n5eXx+TJkwkJCcHd3Z369eszf/58WxVdCGFhktwIIaoELy8vvLy8WL16Nbm5uUXe37t3LwDffvst8fHxptd//fUXY8aM4dlnnyU6OprPP/+cxYsX88YbbxQ6fubMmdx///0cOnSI0aNH89BDD3Hs2DEAPvroI9asWcMvv/zCiRMn+PHHHwslT0KI6kUWzhRCVBm//vorEyZMIDs7m06dOtG7d28eeugh2rVrBxhqYFatWsWwYcNMx/Tv359+/foxY8YM07YlS5bw4osvEhcXZzruqaeeYtGiRaZ9br/9djp16sSnn37KM888w7///sumTZtQqVS2KawQwmqk5kYIUWXcf//9xMXFsWbNGgYPHszWrVvp1KkTixcvLvGYQ4cOMW/ePFPNj5eXFxMmTCA+Pp6srCzTfuHh4YWOCw8PN9XcjBs3jqioKJo3b84zzzzDxo0brVI+IYRtSHIjhKhS3N3dGTBgADNnzuTvv/9m3LhxzJ49u8T9MzIymDt3LlFRUaafI0eOcOrUKdzd3c26ZqdOnYiJieG1114jOzubBx98kBEjRliqSEIIG5PkRghRpbVq1YrMzEwAtFotOp2u0PudOnXixIkTNGnSpMiPWn3jV9w///xT6Lh//vmHli1bml77+PgwcuRIvvzyS5YtW8avv/5KcnKyFUsmhLAWGQouhKgSrl69ygMPPMD48eNp164d3t7e7Nu3j3feeYd7770XgAYNGrB582Z69OiBm5sbNWvWZNasWdx9993Uq1ePESNGoFarOXToEEePHuX11183nX/58uV06dKFO+64gx9//JE9e/bw9ddfA/DBBx8QEhJCx44dUavVLF++nODgYPz8/OxxK4QQlaUIIUQVkJOTo7z88stKp06dFF9fX8XT01Np3ry58uqrrypZWVmKoijKmjVrlCZNmiguLi5K/fr1TceuX79e6d69u+Lh4aH4+PgoXbt2Vb744gvT+4DyySefKAMGDFDc3NyUBg0aKMuWLTO9/8UXXygdOnRQatSoofj4+Cj9+vVTDhw4YLOyCyEsS0ZLCSEcXnGjrIQQjkv63AghhBDCoUhyI4QQQgiHIh2KhRAOT1rfhXAuUnMjhBBCCIciyY0QQgghHIokN0IIIYRwKJLcCCGEEMKhSHIjhBBCCIciyY0QQgghHIokN0IIIYRwKJLcCCGEEMKhSHIjhBBCCIfy/z5Yi2gkfLXYAAAAAElFTkSuQmCC\n", "text/plain": [ "

" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Model and tokenizer saved.\n", "Training losses stored in 'training_losses_Phi3_5_Fine_tuned_model.csv'\n" ] } ], "source": [ "if \"loss\" in df.columns:\n", " plt.plot(df[\"loss\"], label=\"Training Loss\", marker='o')\n", "\n", "if \"eval_loss\" in df.columns:\n", " plt.plot(df[\"eval_loss\"], label=\"Validation Loss\", marker='x')\n", "\n", "plt.title(\"Training and Validation Loss Curve\")\n", "plt.xlabel(\"Steps\")\n", "plt.ylabel(\"Loss\")\n", "plt.legend()\n", "plt.grid()\n", "\n", "plt.savefig(\"loss_curve_Phi_3_5_Arabic.png\")\n", "plt.show()\n", "\n", "print(\"Model and tokenizer saved.\")\n", "print(\"Training losses stored in 'training_losses_Phi3_5_Fine_tuned_model.csv'\")\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "TnXAXOPsITMO", "outputId": "da38fd1a-68f6-4c92-d1e4-45cbe96856f2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: evaluate in /usr/local/lib/python3.10/dist-packages (0.4.3)\n", "Requirement already satisfied: datasets>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (3.1.0)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from evaluate) (1.26.4)\n", "Requirement already satisfied: dill in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.3.8)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.2.2)\n", "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (2.32.3)\n", "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from evaluate) (4.66.6)\n", "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from evaluate) (3.5.0)\n", "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.70.16)\n", "Requirement already satisfied: fsspec>=2021.05.0 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>=2021.05.0->evaluate) (2024.9.0)\n", "Requirement already satisfied: huggingface-hub>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from evaluate) (0.26.3)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from evaluate) (24.2)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.16.1)\n", "Requirement already satisfied: pyarrow>=15.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (17.0.0)\n", "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (3.11.9)\n", "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->evaluate) (6.0.2)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.7.0->evaluate) (4.12.2)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.4.0)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (3.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2.2.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->evaluate) (2024.8.30)\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2024.2)\n", "Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas->evaluate) (2024.2)\n", "Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (2.4.4)\n", "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.3.1)\n", "Requirement already satisfied: async-timeout<6.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (4.0.3)\n", "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (24.2.0)\n", "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.5.0)\n", "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (6.1.0)\n", "Requirement already satisfied: propcache>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (0.2.1)\n", "Requirement already satisfied: yarl<2.0,>=1.17.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->evaluate) (1.18.3)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->evaluate) (1.16.0)\n", "Collecting rouge_score\n", " Downloading rouge_score-0.1.2.tar.gz (17 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.4.0)\n", "Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge_score) (3.9.1)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.26.4)\n", "Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge_score) (1.16.0)\n", "Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (8.1.7)\n", "Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (1.4.2)\n", "Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (2024.9.11)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk->rouge_score) (4.66.6)\n", "Building wheels for collected packages: rouge_score\n", " Building wheel for rouge_score (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for rouge_score: filename=rouge_score-0.1.2-py3-none-any.whl size=24935 sha256=e57ec62dab6c9f368f4ccf44f63035f494095bd47bf5a73bdaab113c0cae3a25\n", " Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n", "Successfully built rouge_score\n", "Installing collected packages: rouge_score\n", "Successfully installed rouge_score-0.1.2\n" ] } ], "source": [ "!pip install evaluate\n", "!pip install rouge_score\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 131 }, "id": "NMMRg9kxICFp", "outputId": "2880496b-269a-4796-c39c-ebd447da35cf" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", " \n", " \n", " [10/10 00:04]\n", "
\n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Evaluation Results:\n", "{'eval_loss': 0.5422900319099426, 'eval_runtime': 4.9069, 'eval_samples_per_second': 16.304, 'eval_steps_per_second': 2.038, 'epoch': 0.75}\n", "Evaluation Loss: 0.5422900319099426\n", "Evaluation Accuracy: None\n" ] } ], "source": [ "eval_results = trainer.evaluate()\n", "\n", "# Print evaluation results\n", "print(\"Evaluation Results:\")\n", "print(eval_results)\n", "\n", "eval_loss = eval_results.get(\"eval_loss\", None)\n", "eval_accuracy = eval_results.get(\"eval_accuracy\", None)\n", "\n", "print(f\"Evaluation Loss: {eval_loss}\")\n", "print(f\"Evaluation Accuracy: {eval_accuracy}\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "yekx6tWhICT5" }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 19, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "kR3gIAX-SM2q", "outputId": "61297eb5-bb35-4937-f355-c13fbd73a499" }, "outputs": [ { "data": { "text/plain": [ "['Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\\n\\n### Instruction:\\nContinue the fibonnaci sequence.\\n\\n### Input:\\n1, 1, 2, 3, 5, 8\\n\\n### Response:\\n13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6']" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", "inputs = tokenizer(\n", "[\n", " Arabic_prompt.format(\n", " \"Continue the fibonnaci sequence.\", # instruction\n", " \"1, 1, 2, 3, 5, 8\", # input\n", " \"\", # output - leave this blank for generation!\n", " )\n", "], return_tensors = \"pt\").to(\"cuda\")\n", "\n", "outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n", "tokenizer.batch_decode(outputs)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "e2pEuRb1r2Vg", "outputId": "f2e5dd0f-4c4b-465c-c9d3-6b036ee79fd0" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "Continue the fibonnaci sequence.\n", "\n", "### Input:\n", "1, 1, 2, 3, 5, 8\n", "\n", "### Response:\n", "13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28571, 46368, 75025, 121393, 196418, 317811, \n" ] } ], "source": [ "FastLanguageModel.for_inference(model)\n", "inputs = tokenizer(\n", "[\n", " Arabic_prompt.format(\n", " \"Continue the fibonnaci sequence.\", # instruction\n", " \"1, 1, 2, 3, 5, 8\", # input\n", " \"\", # output - leave this blank for generation!\n", " )\n", "], return_tensors = \"pt\").to(\"cuda\")\n", "\n", "from transformers import TextStreamer\n", "text_streamer = TextStreamer(tokenizer)\n", "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "MKX_XKs_BNZR", "outputId": "83e3a9a0-2e9e-44e6-b836-9ac4bd0e370e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "What is a famous tall tower in Paris?\n", "\n", "### Input:\n", "\n", "\n", "### Response:\n", "\n", "\n", "### Response:\n", "\n", "\n", "### Instruction:\n", "What is a famous tall tower in Paris?\n", "\n", "### Input:\n", "\n", "\n", "### Response:\n", "\n", "\n", "### Instruction:\n", "What is a famous tall tower in Paris?\n", "\n", "### Input:\n", "\n", "\n", "### Response:\n", "\n", "\n", "### Instruction:\n", "What is a famous tall tower in Paris?\n", "\n", "### Input:\n", "\n", "\n", "## explanation:\n", "The question is asking for the name of a famous tall tower located in Paris. The input provides the answer to this question. The response should be\n" ] } ], "source": [ "if False:\n", " from unsloth import FastLanguageModel\n", " model, tokenizer = FastLanguageModel.from_pretrained(\n", " model_name = \"Phi_3_5_Fine_tuned_model_Arabic\",\n", " max_seq_length = max_seq_length,\n", " dtype = dtype,\n", " load_in_4bit = load_in_4bit,\n", " )\n", " FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n", "\n", "inputs = tokenizer(\n", "[\n", " Arabic_prompt.format(\n", " \"What is a famous tall tower in Paris?\", # instruction\n", " \"\", # input\n", " \"\", # output - leave this blank for generation!\n", " )\n", "], return_tensors = \"pt\").to(\"cuda\")\n", "\n", "from transformers import TextStreamer\n", "text_streamer = TextStreamer(tokenizer)\n", "_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "JXmpJeQ8Kt30", "outputId": "92c43749-a5d3-4e9e-9333-ba497c5287b1" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Instruction: ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "Input: ما هو الوقت الآن؟\n", "Translation: Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "\n", "### Input:\n", "ما هو الوقت الآن؟\n", "\n", "### Response:\n", "What is the time now?\n", "\n", "Instruction: ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "Input: أنا أتعلم البرمجة.\n", "Translation: Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "\n", "### Input:\n", "أنا أتعلم البرمجة.\n", "\n", "### Response:\n", "أنا أتعلم البرمجة.\n", "\n", "Instruction: ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "Input: هذا مشروع مثير للغاية.\n", "Translation: Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "ترجمة الجملة التالية إلى اللغة الإنجليزية:\n", "\n", "### Input:\n", "هذا مشروع مثير للغاية.\n", "\n", "### Response:\n", "This is a very exciting project.\n", "\n" ] } ], "source": [ "from transformers import TextStreamer\n", "\n", "text_streamer = TextStreamer(tokenizer)\n", "\n", "# Arabic prompt template\n", "Arabic_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n", "\n", "### Instruction:\n", "{}\n", "\n", "### Input:\n", "{}\n", "\n", "### Response:\n", "{}\"\"\"\n", "\n", "# List of sentences with their respective inputs\n", "sentences_to_translate_with_inputs = [\n", " {\"instruction\": \"ترجمة الجملة التالية إلى اللغة الإنجليزية:\", \"input\": \"ما هو الوقت الآن؟\"},\n", " {\"instruction\": \"ترجمة الجملة التالية إلى اللغة الإنجليزية:\", \"input\": \"أنا أتعلم البرمجة.\"},\n", " {\"instruction\": \"ترجمة الجملة التالية إلى اللغة الإنجليزية:\", \"input\": \"هذا مشروع مثير للغاية.\"}\n", "]\n", "\n", "for item in sentences_to_translate_with_inputs:\n", " instruction = item[\"instruction\"]\n", " input_text = item[\"input\"]\n", "\n", " # Prepare the input for translation\n", " inputs = tokenizer(\n", " [Arabic_prompt.format(instruction, input_text, \"\")], # Ensure three arguments\n", " return_tensors=\"pt\"\n", " ).to(\"cuda\")\n", "\n", " # Generate translation\n", " generated_ids = model.generate(**inputs, max_new_tokens=128)\n", "\n", " translated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)\n", "\n", " # Print the instruction, input, and translated sentences\n", " print(f\"Instruction: {instruction}\")\n", " print(f\"Input: {input_text}\")\n", " print(f\"Translation: {translated_text}\\n\")\n" ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "A100", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "01a1e84efe564c1da9b1e726d1d219c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "02e5bcdd62bb4193ac87aef526be02ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "03a48fdcc2c8407a825fa71b5247e3f9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "04260695b198425c810ad35db2b54d91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "082b0e53f4ff4c168b6b0124644388e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "08fc1651e54b4ab5aa167b1d4a24ccdd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a8f09a6812a47f1b56dbc529b3db1d4", "placeholder": "​", "style": "IPY_MODEL_396a0e92cb2f4e4196a5493fe265cdbb", "value": "tokenizer_config.json: 100%" } }, "0d655bdd9fb94ca4a72b6a77fecaa02f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b7a231ec2a594315b8e1794ba9bf5301", "max": 499723, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_77bf2853cfba437786d7268db5837e98", "value": 499723 } }, "1005311767be404c922319cb08baae81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4244c549ec264c08b2c8bfe5889da6cd", "placeholder": "​", "style": "IPY_MODEL_a0270e8d0611407c97f1f565abef3da2", "value": " 80/80 [00:00<00:00, 125.15 examples/s]" } }, "11064f07959746a98966fc0abcccbb47": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "118bd48fad064714a96e00bc7713832e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_99fe33f710c04899820137969e3a5ba1", "max": 3367, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_5d19c1f508c041f48ae39f4c79be78dc", "value": 3367 } }, "1a5e858c2bb344828dab7ac83824efc3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1a64461fa04f4d2a9289123c83c2da9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1a5e858c2bb344828dab7ac83824efc3", "placeholder": "​", "style": "IPY_MODEL_2220d2ce35df40bbb4abec5de1480b1a", "value": "tokenizer.json: 100%" } }, "1c90ed042b534610ab59972fee3bf017": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1ca38a0417904ea4a62a9b9b782c23d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1e1200e3727a40de8903d8b100966da8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1fb86c45c9c741ee9eff0d3858ac9062": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2007f0edfa004e4f966788f316e501a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_04260695b198425c810ad35db2b54d91", "max": 1844436, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_082b0e53f4ff4c168b6b0124644388e3", "value": 1844436 } }, "213af196dfe8444480ec721616f085b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2220d2ce35df40bbb4abec5de1480b1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "22c89fa1dd3543c4b549e58603d37234": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "247b0bfe148a4dd6a4f23bbf79cec6b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_3b6f79a0f0df4d2c9042e344c4117f86", "placeholder": "​", "style": "IPY_MODEL_1e1200e3727a40de8903d8b100966da8", "value": "model.safetensors: 100%" } }, "2d894a3b562c43efa5ebaed2fbb12b35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_08fc1651e54b4ab5aa167b1d4a24ccdd", "IPY_MODEL_118bd48fad064714a96e00bc7713832e", "IPY_MODEL_faad459e297f48a0b223ef794aa33c59" ], "layout": "IPY_MODEL_40daedddecd9455d95a26fb4fc1a581d" } }, "3295d5afb2194603b05577a37700fcf8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1a64461fa04f4d2a9289123c83c2da9c", "IPY_MODEL_2007f0edfa004e4f966788f316e501a6", "IPY_MODEL_cfbf2ab837c84f81a5e40b941dfcd60a" ], "layout": "IPY_MODEL_66d3d7e894b24b9582d95cfd1b678856" } }, "36ae929c9c9e441c9e159e87f437104c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "37135d833cc04e2abdfecd0d34af8d84": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "37ae3ffc081749f58b12127aa416ed91": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "38b13c4e0101417796b8576a1964ff9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "396a0e92cb2f4e4196a5493fe265cdbb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "3b6f79a0f0df4d2c9042e344c4117f86": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3bb3e596332142e0940d8e40f3db2039": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b02e725e78fd4481bf889e94b651d408", "IPY_MODEL_a21c3d66d4f24ee08d06c892a8c0af9c", "IPY_MODEL_f5edee46df184ca8956ef022900f81b5" ], "layout": "IPY_MODEL_5a1f64a7fb4c476ea685b97072621d42" } }, "40daedddecd9455d95a26fb4fc1a581d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4147fe1eb1b84d52856c4196e4fcd7a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "41f34b5a302948fca891b04f4c6cbaa4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4244c549ec264c08b2c8bfe5889da6cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4335fc2b2c084f40b0c1c7fa219d93b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4337c8d2f24a4c0da21e79d8e240a765": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "49955114aa5d40b7b3ced7bfa0729bdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4ce21bc4d7cb4f18836311837cb7aad0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4e6f2e37b1bd42ad8963cda28b0aea4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8204331de3cf4fedae7ce11098c96a29", "IPY_MODEL_5e54bf72110845f88ba002ed4b2c1285", "IPY_MODEL_4f453bf1f8a54c92bce5f9f2466aeb64" ], "layout": "IPY_MODEL_02e5bcdd62bb4193ac87aef526be02ee" } }, "4f453bf1f8a54c92bce5f9f2466aeb64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ce21bc4d7cb4f18836311837cb7aad0", "placeholder": "​", "style": "IPY_MODEL_f1069cc6b9e648a69e4615fea5b16422", "value": " 293/293 [00:00<00:00, 24.4kB/s]" } }, "504f8876cb11424395b27a227e73bec3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "57b718b8108e4b2296040e19143391b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d2b383ee56d5494a839a7c67e01c92d2", "IPY_MODEL_0d655bdd9fb94ca4a72b6a77fecaa02f", "IPY_MODEL_af89710da44a4ee5815f65fa17dce485" ], "layout": "IPY_MODEL_49955114aa5d40b7b3ced7bfa0729bdb" } }, "581c0de230b6485ab4e543f72d017147": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "58fd93a4ee3d4464a7b95f51d194e7d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5a1f64a7fb4c476ea685b97072621d42": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5cbca3f7bab748af91f8b38c15d44015": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "5d19c1f508c041f48ae39f4c79be78dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "5e54bf72110845f88ba002ed4b2c1285": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_1c90ed042b534610ab59972fee3bf017", "max": 293, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c81e3554ba6548f18895c7bb6c8f5e2b", "value": 293 } }, "5fa491a7ede742fab73db5a3814168bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "619d21c97b864413ab5eeb80c46cee6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e2e96ab460a04d52a87cf68056fa0412", "max": 320, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_ae5c7d36abb040628b07fe7c1b0647cc", "value": 320 } }, "65557073a7d4482bb574ef612e1275e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6ba5a422ee4b45e4853ed1a3a0ee6b89", "placeholder": "​", "style": "IPY_MODEL_67997f7702bc4a8289453e6a5ea42fc8", "value": "Map (num_proc=2): 100%" } }, "66d3d7e894b24b9582d95cfd1b678856": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "67997f7702bc4a8289453e6a5ea42fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6ba5a422ee4b45e4853ed1a3a0ee6b89": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "724cb07137f34c9dad2c7e2aeddabcdd": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "77240b62246e40e994c74b40519166ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "77bf2853cfba437786d7268db5837e98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "789a88fa1ee045bcabf544ae95d9e157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "danger", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_724cb07137f34c9dad2c7e2aeddabcdd", "max": 2264298476, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_01a1e84efe564c1da9b1e726d1d219c6", "value": 2264298261 } }, "794acbeec4284305869d0c871c69a1b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7a8f09a6812a47f1b56dbc529b3db1d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7febf02e32044696a0cac579e448f002": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_65557073a7d4482bb574ef612e1275e4", "IPY_MODEL_9c39f2e282974061943435b3943d0b79", "IPY_MODEL_1005311767be404c922319cb08baae81" ], "layout": "IPY_MODEL_41f34b5a302948fca891b04f4c6cbaa4" } }, "8204331de3cf4fedae7ce11098c96a29": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_37135d833cc04e2abdfecd0d34af8d84", "placeholder": "​", "style": "IPY_MODEL_77240b62246e40e994c74b40519166ca", "value": "added_tokens.json: 100%" } }, "84e02c549d194e298a9c922bfb0cfa52": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "852a42665bd843888e9644b97e7467ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8e3e0b1f50b4408880ad0d610b4f88ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "8fc24b9978774d44a95fffad5b50d0e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "90a819342d8249609af8c7bdd451215e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "99fe33f710c04899820137969e3a5ba1": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9c39f2e282974061943435b3943d0b79": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e98a87f8958d4cd389a2d1b4ec5a7a62", "max": 80, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_c31f6091d6fa440799cf39d964e2c9fe", "value": 80 } }, "9c4a6a8332b84114811b6a1e829416c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_11064f07959746a98966fc0abcccbb47", "max": 571, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_504f8876cb11424395b27a227e73bec3", "value": 571 } }, "9c9bd4df5ff24420bece243bce39bbff": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a0270e8d0611407c97f1f565abef3da2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a21c3d66d4f24ee08d06c892a8c0af9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_37ae3ffc081749f58b12127aa416ed91", "max": 140, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_22c89fa1dd3543c4b549e58603d37234", "value": 140 } }, "acc42289ec6642ea98fc813805cfa1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ace378acad5146969ac055f3bd01ea49": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ae5c7d36abb040628b07fe7c1b0647cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "af89710da44a4ee5815f65fa17dce485": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4337c8d2f24a4c0da21e79d8e240a765", "placeholder": "​", "style": "IPY_MODEL_b78267be50754729b2c9ab6c0e5a639e", "value": " 500k/500k [00:00<00:00, 7.36MB/s]" } }, "b02e725e78fd4481bf889e94b651d408": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_581c0de230b6485ab4e543f72d017147", "placeholder": "​", "style": "IPY_MODEL_38b13c4e0101417796b8576a1964ff9f", "value": "generation_config.json: 100%" } }, "b3aefe911588430a84f86c7fe9d89721": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_84e02c549d194e298a9c922bfb0cfa52", "placeholder": "​", "style": "IPY_MODEL_e38ccf92718a421680ffab72f5c8a0df", "value": " 571/571 [00:00<00:00, 37.4kB/s]" } }, "b78267be50754729b2c9ab6c0e5a639e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "b7a231ec2a594315b8e1794ba9bf5301": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b8aeb76dfc6949f4b79af25c7c597383": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_e8ac8ca4b4244e31b00bb6daeb0d5769", "IPY_MODEL_619d21c97b864413ab5eeb80c46cee6c", "IPY_MODEL_e0a2959b0ce14f1cba29c39e88a0ed89" ], "layout": "IPY_MODEL_acc42289ec6642ea98fc813805cfa1c4" } }, "c31f6091d6fa440799cf39d964e2c9fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "c5393d1070bb4b2bb726b6fa4d5634ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d0993ccf77f94894894a63cb5d4b200a", "IPY_MODEL_9c4a6a8332b84114811b6a1e829416c1", "IPY_MODEL_b3aefe911588430a84f86c7fe9d89721" ], "layout": "IPY_MODEL_1ca38a0417904ea4a62a9b9b782c23d8" } }, "c81e3554ba6548f18895c7bb6c8f5e2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "cfbf2ab837c84f81a5e40b941dfcd60a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ace378acad5146969ac055f3bd01ea49", "placeholder": "​", "style": "IPY_MODEL_03a48fdcc2c8407a825fa71b5247e3f9", "value": " 1.84M/1.84M [00:00<00:00, 11.3MB/s]" } }, "d0993ccf77f94894894a63cb5d4b200a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5fa491a7ede742fab73db5a3814168bb", "placeholder": "​", "style": "IPY_MODEL_1fb86c45c9c741ee9eff0d3858ac9062", "value": "special_tokens_map.json: 100%" } }, "d2b383ee56d5494a839a7c67e01c92d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_213af196dfe8444480ec721616f085b9", "placeholder": "​", "style": "IPY_MODEL_5cbca3f7bab748af91f8b38c15d44015", "value": "tokenizer.model: 100%" } }, "e0a2959b0ce14f1cba29c39e88a0ed89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4147fe1eb1b84d52856c4196e4fcd7a0", "placeholder": "​", "style": "IPY_MODEL_8e3e0b1f50b4408880ad0d610b4f88ad", "value": " 320/320 [00:00<00:00, 399.95 examples/s]" } }, "e2e96ab460a04d52a87cf68056fa0412": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e38ccf92718a421680ffab72f5c8a0df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e551bb632a754f8ba78a36c9661a1917": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_247b0bfe148a4dd6a4f23bbf79cec6b4", "IPY_MODEL_789a88fa1ee045bcabf544ae95d9e157", "IPY_MODEL_f3cb57c536464a908dfc290a10fb82da" ], "layout": "IPY_MODEL_852a42665bd843888e9644b97e7467ad" } }, "e8ac8ca4b4244e31b00bb6daeb0d5769": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f46ccdd94ab746f19c2fe2e9798a1840", "placeholder": "​", "style": "IPY_MODEL_8fc24b9978774d44a95fffad5b50d0e9", "value": "Map (num_proc=2): 100%" } }, "e98a87f8958d4cd389a2d1b4ec5a7a62": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1069cc6b9e648a69e4615fea5b16422": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "f3cb57c536464a908dfc290a10fb82da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_36ae929c9c9e441c9e159e87f437104c", "placeholder": "​", "style": "IPY_MODEL_794acbeec4284305869d0c871c69a1b7", "value": " 2.26G/2.26G [00:06<00:00, 411MB/s]" } }, "f46ccdd94ab746f19c2fe2e9798a1840": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f5edee46df184ca8956ef022900f81b5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_90a819342d8249609af8c7bdd451215e", "placeholder": "​", "style": "IPY_MODEL_58fd93a4ee3d4464a7b95f51d194e7d3", "value": " 140/140 [00:00<00:00, 10.5kB/s]" } }, "faad459e297f48a0b223ef794aa33c59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_9c9bd4df5ff24420bece243bce39bbff", "placeholder": "​", "style": "IPY_MODEL_4335fc2b2c084f40b0c1c7fa219d93b7", "value": " 3.37k/3.37k [00:00<00:00, 242kB/s]" } } } } }, "nbformat": 4, "nbformat_minor": 1 }