import torch from common.diff_engine import DiffCase import activation class PolyNorm(torch.nn.Module): def __init__(self, eps=1e-6, dtype: torch.dtype = torch.float32): super().__init__() self.weight = torch.nn.Parameter(torch.ones(3, dtype=dtype) / 3) self.bias = torch.nn.Parameter(torch.zeros(1, dtype=dtype)) self.eps = eps def _norm(self, x): return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): orig_dtype = x.dtype x_float = x.to(torch.float32) output = (self.weight[0] * self._norm(x_float**3) + self.weight[1] * self._norm(x_float**2) + self.weight[2] * self._norm(x_float) + self.bias) return output.to(orig_dtype) class Poly(DiffCase): def build_inputs(self, bs, sl, hidden, dtype, eps): return { "x": torch.randn(bs, sl, hidden, dtype=dtype, requires_grad=True), "weight": torch.ones(3, dtype=dtype), "bias": torch.ones(1, dtype=dtype), "dim": hidden, "eps": eps, "dtype": dtype, } def make_naive(self, I): m = PolyNorm(I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) m.bias = torch.nn.Parameter(I["bias"].detach().clone()) return m def make_cuda(self, I): m = activation.layers.PolyNorm(I["eps"], dtype=I["dtype"]) m.weight = torch.nn.Parameter(I["weight"].detach().clone()) m.bias = torch.nn.Parameter(I["bias"].detach().clone()) return m def forward(self, obj, I): return obj(I["x"]) def grad_inputs(self, I): return [I["x"]] CASE = Poly()