--- license: apache-2.0 --- ### This model is trained from Mistral-7B-Instruct-V0.2 with 90% chinese dataset and 10% english dataset github [Web-UI](https://github.com/moseshu/llama2-chat/tree/main/webui) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62f4c7172f63f904a0c61ba3/JIeyxhTm9_PNzXyU7wQVd.png) ``` from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer,AutoTokenizer,AutoModelForCausalLM,MistralForCausalLM import torch model_id=Mistral-7B-Instruct-v0.4 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",) prompt = "[INST] <>\nYou are a helpful, respectful and honest assistant.Help humman as much as you can.\n<>\n\n{instruction} [/INST]" text = prompt.format_map({"instruction":"你好,最近干嘛呢"}) def predict(content_prompt): inputs = tokenizer(content_prompt,return_tensors="pt",add_special_tokens=True) input_ids = inputs["input_ids"].to("cuda:0") # print(f"input length:{len(input_ids[0])}") with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, #generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=2048, top_p=0.9, num_beams=1, do_sample=True, repetition_penalty=1.0, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) s = generation_output.sequences[0] output = tokenizer.decode(s,skip_special_tokens=True) output1 = output.split("[/INST]")[-1].strip() # print(output1) return output1 predict(text) output:你好!作为一个大型语言模型,我一直在学习和提高自己的能力。最近,我一直在努力学习新知识、改进算法,以便更好地回答用户的问题并提供帮助。同时,我也会定期接受人工智能专家的指导和评估,以确保我的表现不断提升。希望这些信息对你有所帮助! ```