import torch
from transformers import (
LlamaForCausalLM,
LlamaTokenizer,
StoppingCriteria,
BitsAndBytesConfig
)
import gradio as gr
import argparse
import os
from queue import Queue
from threading import Thread
import traceback
import gc
import json
import requests
from typing import Iterable, List
import subprocess
import re
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant.Help as much as you can. """
TEMPLATE_WITH_SYSTEM_PROMPT = (
"[INST] <>\n"
"{system_prompt}\n"
"<>\n\n"
"{instruction} [/INST]"
)
TEMPLATE_WITHOUT_SYSTEM_PROMPT = "[INST] {instruction} [/INST]"
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
'--base_model',
default=None,
type=str,
required=True,
help='Base model path')
parser.add_argument('--lora_model', default=None, type=str,
help="If None, perform inference on the base model")
parser.add_argument(
'--tokenizer_path',
default=None,
type=str,
help='If None, lora model path or base model path will be used')
parser.add_argument(
'--gpus',
default="0",
type=str,
help='If None, cuda:0 will be used. Inference using multi-cards: --gpus=0,1,... ')
parser.add_argument('--share', default=True, help='Share gradio domain name')
parser.add_argument('--port', default=19324, type=int, help='Port of gradio demo')
parser.add_argument(
'--max_memory',
default=1024,
type=int,
help='Maximum number of input tokens (including system prompt) to keep. If exceeded, earlier history will be discarded.')
parser.add_argument(
'--load_in_8bit',
action='store_true',
default=False,
help='Use 8 bit quantized model')
parser.add_argument(
'--load_in_4bit',
action='store_true',
default=False,
help='Use 4 bit quantized model')
parser.add_argument(
'--only_cpu',
action='store_true',
help='Only use CPU for inference')
parser.add_argument(
'--alpha',
type=str,
default="1.0",
help="The scaling factor of NTK method, can be a float or 'auto'. ")
parser.add_argument(
"--use_vllm",
action='store_true',
help="Use vLLM as back-end LLM service.")
parser.add_argument(
"--post_host",
type=str,
default="0.0.0.0",
help="Host of vLLM service.")
parser.add_argument(
"--post_port",
type=int,
default=7777,
help="Port of vLLM service.")
args = parser.parse_args()
ENABLE_CFG_SAMPLING = True
try:
from transformers.generation import UnbatchedClassifierFreeGuidanceLogitsProcessor
except ImportError:
ENABLE_CFG_SAMPLING = False
print("Install the latest transformers (commit equal or later than d533465) to enable CFG sampling.")
if args.use_vllm is True:
print("CFG sampling is disabled when using vLLM.")
ENABLE_CFG_SAMPLING = False
if args.only_cpu is True:
args.gpus = ""
if args.load_in_8bit or args.load_in_4bit:
raise ValueError("Quantization is unavailable on CPU.")
if args.load_in_8bit and args.load_in_4bit:
raise ValueError("Only one quantization method can be chosen for inference. Please check your arguments")
import sys
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
from attn_and_long_ctx_patches import apply_attention_patch, apply_ntk_scaling_patch
if not args.only_cpu:
apply_attention_patch(use_memory_efficient_attention=True)
apply_ntk_scaling_patch(args.alpha)
# Set CUDA devices if available
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
# Peft library can only import after setting CUDA devices
from peft import PeftModel
# Set up the required components: model and tokenizer
def setup():
global tokenizer, model, device, share, port, max_memory
if args.use_vllm:
# global share, port, max_memory
max_memory = args.max_memory
port = args.port
share = args.share
if args.lora_model is not None:
raise ValueError("vLLM currently does not support LoRA, please merge the LoRA weights to the base model.")
if args.load_in_8bit or args.load_in_4bit:
raise ValueError("vLLM currently does not support quantization, please use fp16 (default) or unuse --use_vllm.")
if args.only_cpu:
raise ValueError("vLLM requires GPUs with compute capability not less than 7.0. If you want to run only on CPU, please unuse --use_vllm.")
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
print("Start launch vllm server.")
cmd = f"python -m vllm.entrypoints.api_server \
--model={args.base_model} \
--tokenizer={args.tokenizer_path} \
--tokenizer-mode=slow \
--tensor-parallel-size={len(args.gpus.split(','))} \
--host {args.post_host} \
--port {args.post_port} \
&"
subprocess.check_call(cmd, shell=True)
else:
max_memory = args.max_memory
port = args.port
share = args.share
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
# if args.lora_model is None:
# args.tokenizer_path = args.base_model
tokenizer = LlamaTokenizer.from_pretrained(args.tokenizer_path, legacy=True)
tokenizer.pad_token_id = 0
# tokenizer.pad_token = "<>"
base_model = LlamaForCausalLM.from_pretrained(
args.base_model,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
quantization_config=BitsAndBytesConfig(
load_in_4bit=args.load_in_4bit,
load_in_8bit=args.load_in_8bit,
bnb_4bit_compute_dtype=load_type
)
)
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenizer_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenizer_vocab_size}")
if model_vocab_size != tokenizer_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenizer_vocab_size)
if args.lora_model is not None:
print("loading peft model")
model = PeftModel.from_pretrained(
base_model,
args.lora_model,
torch_dtype=load_type,
device_map='auto',
).half()
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
# Reset the user input
def reset_user_input():
return gr.update(value='')
# Reset the state
def reset_state():
return []
def generate_prompt(instruction, response="", with_system_prompt=True, system_prompt=DEFAULT_SYSTEM_PROMPT):
if with_system_prompt is True:
prompt = TEMPLATE_WITH_SYSTEM_PROMPT.format_map({'instruction': instruction,'system_prompt': system_prompt})
else:
prompt = TEMPLATE_WITHOUT_SYSTEM_PROMPT.format_map({'instruction': instruction})
if len(response)>0:
prompt += " " + response
return prompt
# User interaction function for chat
def user(user_message, history):
return gr.update(value="", interactive=False), history + \
[[user_message, None]]
class Stream(StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
Adapted from: https://stackoverflow.com/a/9969000
"""
def __init__(self, func, kwargs=None, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs or {}
self.stop_now = False
def _callback(val):
if self.stop_now:
raise ValueError
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except Exception:
traceback.print_exc()
clear_torch_cache()
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
clear_torch_cache()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
clear_torch_cache()
def clear_torch_cache():
gc.collect()
if torch.cuda.device_count() > 0:
torch.cuda.empty_cache()
def post_http_request(prompt: str,
api_url: str,
n: int = 1,
top_p: float = 0.9,
top_k: int = 40,
temperature: float = 0.2,
max_tokens: int = 1024,
presence_penalty: float = 1.0,
use_beam_search: bool = False,
stream: bool = False) -> requests.Response:
headers = {"User-Agent": "Test Client"}
pload = {
"prompt": prompt,
"n": n,
"top_p": 1 if use_beam_search else top_p,
"top_k": -1 if use_beam_search else top_k,
"temperature": 0 if use_beam_search else temperature,
"max_tokens": max_tokens,
"use_beam_search": use_beam_search,
"best_of": 5 if use_beam_search else n,
"presence_penalty": presence_penalty,
"stream": stream,
}
print(pload)
response = requests.post(api_url, headers=headers, json=pload, stream=True)
return response
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
for chunk in response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"]
yield output
# Perform prediction based on the user input and history
@torch.no_grad()
def predict(
history,
system_prompt,
negative_prompt,
max_new_tokens=1024,
top_p=0.89,
temperature=0.85,
top_k=40,
do_sample=True,
repetition_penalty=1.2,
guidance_scale=1.0,
presence_penalty=0.0,
):
if len(system_prompt) == 0:
system_prompt = DEFAULT_SYSTEM_PROMPT
while True:
print("len(history):", len(history))
print("history: ", history)
history[-1][1] = ""
if len(history) == 1:
input = history[0][0]
prompt = generate_prompt(input,response="", with_system_prompt=True, system_prompt=system_prompt)
print(f"prompt:{prompt}")
else:
input = history[0][0]
response = history[0][1]
prompt = generate_prompt(input, response=response, with_system_prompt=True, system_prompt=system_prompt)+''
for hist in history[1:-1]:
input = hist[0]
response = hist[1]
prompt = prompt + ''+generate_prompt(input, response=response, with_system_prompt=False)+''
input = history[-1][0]
prompt = prompt + ''+generate_prompt(input, response="", with_system_prompt=False)
print(f"prompt1:{prompt}")
input_length = len(tokenizer.encode(prompt, add_special_tokens=True))
print(f"Input length: {input_length}")
if input_length > max_memory and len(history) > 1:
print(f"The input length ({input_length}) exceeds the max memory ({max_memory}). The earlier history will be discarded.")
history = history[1:]
print("history: ", history)
else:
break
if args.use_vllm:
generate_params = {
'max_tokens': max_new_tokens,
'top_p': top_p,
'temperature': temperature,
'top_k': top_k,
"use_beam_search": not do_sample,
'presence_penalty': presence_penalty,
}
api_url = f"http://{args.post_host}:{args.post_port}/generate"
response = post_http_request(prompt, api_url, **generate_params, stream=True)
for h in get_streaming_response(response):
for line in h:
line = line.replace(prompt, '')
history[-1][1] = line
yield history
else:
negative_text = None
if len(negative_prompt) != 0:
negative_text = re.sub(r"<>\n(.*)\n<>", f"<>\n{negative_prompt}\n<>", prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if negative_text is None:
negative_prompt_ids = None
negative_prompt_attention_mask = None
else:
negative_inputs = tokenizer(negative_text,return_tensors="pt")
negative_prompt_ids = negative_inputs["input_ids"].to(device)
negative_prompt_attention_mask = negative_inputs["attention_mask"].to(device)
generate_params = {
'input_ids': input_ids,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'temperature': temperature,
'top_k': top_k,
'do_sample': do_sample,
'repetition_penalty': repetition_penalty,
}
if ENABLE_CFG_SAMPLING is True:
generate_params['guidance_scale'] = guidance_scale
generate_params['negative_prompt_ids'] = negative_prompt_ids
generate_params['negative_prompt_attention_mask'] = negative_prompt_attention_mask
def generate_with_callback(callback=None, **kwargs):
if 'stopping_criteria' in kwargs:
kwargs['stopping_criteria'].append(Stream(callback_func=callback))
else:
kwargs['stopping_criteria'] = [Stream(callback_func=callback)]
clear_torch_cache()
with torch.no_grad():
model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
next_token_ids = output[len(input_ids[0]):]
if next_token_ids[0] in [tokenizer.eos_token_id,0]:
break
new_tokens = tokenizer.decode(
next_token_ids, skip_special_tokens=True)
if isinstance(tokenizer, LlamaTokenizer) and len(next_token_ids) > 0:
if tokenizer.convert_ids_to_tokens(int(next_token_ids[0])).startswith('▁'):
new_tokens = ' ' + new_tokens
history[-1][1] = new_tokens
yield history
if len(next_token_ids) >= max_new_tokens:
break
# Call the setup function to initialize the components
setup()
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}") as demo:
github_banner_path = 'https://raw.githubusercontent.com/moseshu/llama2-chat/main/llama2.jpg'
gr.HTML(f'
Llama2-Moses-7b
')
chatbot = gr.Chatbot().style(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=3):
system_prompt_input = gr.Textbox(
show_label=True,
label="system prompt(仅在对话开始前或清空历史后修改有效,对话过程中修改无效)",
placeholder=DEFAULT_SYSTEM_PROMPT,
lines=1).style(
container=True)
negative_prompt_input = gr.Textbox(
show_label=True,
label="反向提示语(仅在对话开始前或清空历史后修改有效,对话过程中修改无效)",
placeholder="option",
lines=1,
visible=ENABLE_CFG_SAMPLING).style(
container=True)
with gr.Column(scale=10):
user_input = gr.Textbox(
show_label=True,
label="ChatBox",
text_align='right',
placeholder="Shift + Enter发送消息...",
lines=10).style(
container=True)
with gr.Column(min_width=24, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_new_token = gr.Slider(
0,
4096,
value=1024,
step=1.0,
label="Maximum New Token Length",
interactive=True)
top_p = gr.Slider(0, 1, value=0.9, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0,
1,
value=0.7,
step=0.01,
label="Temperature",
interactive=True)
top_k = gr.Slider(1, 40, value=40, step=1,
label="Top K", interactive=True)
do_sample = gr.Checkbox(
value=True,
label="Do Sample",
info="use random sample strategy",
interactive=True)
repetition_penalty = gr.Slider(
1.0,
3.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
interactive=True,
visible=False if args.use_vllm else True)
guidance_scale = gr.Slider(
1.0,
3.0,
value=1.0,
step=0.1,
label="Guidance Scale",
interactive=True,
visible=ENABLE_CFG_SAMPLING)
presence_penalty = gr.Slider(
-2.0,
2.0,
value=1.0,
step=0.1,
label="Presence Penalty",
interactive=True,
visible=True if args.use_vllm else False)
params = [user_input, chatbot]
predict_params = [
chatbot,
system_prompt_input,
negative_prompt_input,
max_new_token,
top_p,
temperature,
top_k,
do_sample,
repetition_penalty,
guidance_scale,
presence_penalty]
with gr.Row():
gr.Markdown(
"免责声明:该模型可能会产生与事实不符的输出,不应依赖该模型来产生与事实相符的信息。模型在各种公共数据集以及得物一些商品信息进行训练。尽管做了大量的数据清洗,但是模型的输出结果还可能存在一些问题",
elem_classes=["disclaimer"],
)
submitBtn.click(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=False)
user_input.submit(
user,
params,
params,
queue=False).then(
predict,
predict_params,
chatbot).then(
lambda: gr.update(
interactive=True),
None,
[user_input],
queue=False)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot], show_progress=True)
# Launch the Gradio interface
demo.queue().launch(
share=share,
inbrowser=True,
server_name='0.0.0.0',
server_port=port)