--- library_name: peft base_model: EleutherAI/gpt-neo-1.3B --- # Model Card for Model ID ## Model Details ### Model Description Just a way to sample moods of an end-uesr using generic data from the Google GEMENI API - **Developed by:** [More Information Needed] inferencetrainingAI, Vultr.com & GitLab, Google Colab, AWS - **Funded by [optional]:** [More Information Needed] Crystal P & Emmanuel Nsanga, Roy Kwan - **Shared by [optional]:** [More Information Needed] - **Model type:** Peft Model - **Language(s) (NLP):** [More Information Needed] - **License:** MIT - **Finetuned from model [optional]:** EleutherAI 1.3B ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] Training file included ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch from peft import PeftModel, PeftConfig import gc gc.collect() model_name = "MoodChartAI/basicmood" adapters_name = "MoodChartAI/basicmood" torch.cuda.empty_cache() os.system("sudo swapoff -a; swapon -a") print(f"Starting to load the model {model_name} into memory") m = AutoModelForCausalLM.from_pretrained( model_name, #load_in_4bit=True, ).to(device='cpu:7') print(f"Loading the adapters from {adapters_name}") m = PeftModel.from_pretrained(m, adapters_name) tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B", trust_remote_code=True) while True: mood_input = input("Mood: ") inputs = tokenizer("Prompt: %s Completions: You're feeling"%mood_input, return_tensors="pt", return_attention_mask=True) inputs.to(device='cpu:8') outputs = m.generate(**inputs, max_length=12) print(tokenizer.batch_decode(outputs)[0]) ``` ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data Generic data from GEMENI API [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] 16GB RAM 8GB sawp memeroy #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2