Shortcuts / sharpness /gen_images.py
KublaiKhan1's picture
Upload folder using huggingface_hub
71fdb1b verified
from typing import Any
import jax.numpy as jnp
from absl import app, flags
from functools import partial
import numpy as np
import tqdm
import jax
import jax.numpy as jnp
import flax
import optax
import wandb
from ml_collections import config_flags
import ml_collections
from utils.wandb import setup_wandb, default_wandb_config
from utils.train_state import TrainStateEma
from utils.checkpoint import Checkpoint
from utils.stable_vae import StableVAE
from utils.sharding import create_sharding, all_gather
from utils.datasets import get_dataset
from model import DiT
from helper_eval import eval_model
from helper_inference import do_inference
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset_name', 'imagenet256', 'Environment name.')
flags.DEFINE_string('load_dir', './checkpoints/810001/810001.tmp', 'Logging dir (if not None, save params).')
#flags.DEFINE_string('load_dir', './sharpness/final_810001.tmp', 'Logging dir (if not None, save params).)
flags.DEFINE_string('save_dir', './checkpoints/', 'Logging dir (if not None, save params).')
flags.DEFINE_string('fid_stats', None, 'FID stats file.')
flags.DEFINE_integer('seed', 10, 'Random seed.') # Must be the same across all processes.
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 1000000, 'Eval interval.')
flags.DEFINE_integer('save_interval', 10000, 'Save interval.')
flags.DEFINE_integer('batch_size', 256, 'Mini batch size.')
flags.DEFINE_integer('max_steps', int(500_000), 'Number of training steps.')
flags.DEFINE_integer('debug_overfit', 0, 'Debug overfitting.')
flags.DEFINE_string('mode', 'train', 'train or inference.')
model_config = ml_collections.ConfigDict({
'lr': 0.0001,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.1,
'use_cosine': 0,
'warmup': 0,
'dropout': 0.0,
'hidden_size': 64, # change this!
'patch_size': 8, # change this!
'depth': 2, # change this!
'num_heads': 2, # change this!
'mlp_ratio': 1, # change this!
'class_dropout_prob': 0.1,
'num_classes': 1000,
'denoise_timesteps': 128,
'cfg_scale': 4.0,
'target_update_rate': 0.999,
'use_ema': 0,
'use_stable_vae': 1,
'sharding': 'dp', # dp or fsdp.
't_sampling': 'discrete-dt',
'dt_sampling': 'uniform',
'bootstrap_cfg': 0,
'bootstrap_every': 8, # Make sure its a divisor of batch size.
'bootstrap_ema': 1,
'bootstrap_dt_bias': 0,
'train_type': 'shortcut' # or naive.
})
#config_flags.DEFINE_config_dict('wandb', wandb_config, lock_config=False)
config_flags.DEFINE_config_dict('model', model_config, lock_config=False)
##############################################
## Training Code.
##############################################
def main(_):
np.random.seed(FLAGS.seed)
print("Using devices", jax.local_devices())
device_count = len(jax.local_devices())
global_device_count = jax.device_count()
print("Device count", device_count)
print("Global device count", global_device_count)
local_batch_size = FLAGS.batch_size // (global_device_count // device_count)
print("Global Batch: ", FLAGS.batch_size)
print("Node Batch: ", local_batch_size)
print("Device Batch:", local_batch_size // device_count)
# Create wandb logger
if jax.process_index() == 0 and FLAGS.mode == 'train':
setup_wandb(FLAGS.model.to_dict(), **FLAGS.wandb)
dataset = get_dataset(FLAGS.dataset_name, local_batch_size, True, FLAGS.debug_overfit)
dataset_valid = get_dataset(FLAGS.dataset_name, local_batch_size, False, FLAGS.debug_overfit)
example_obs, example_labels = next(dataset)
example_obs = example_obs[:1]
example_obs_shape = example_obs.shape
if FLAGS.model.use_stable_vae:
vae = StableVAE.create()
if 'latent' in FLAGS.dataset_name:
example_obs = example_obs[:, :, :, example_obs.shape[-1] // 2:]
example_obs_shape = example_obs.shape
else:
example_obs = vae.encode(jax.random.PRNGKey(0), example_obs)
example_obs_shape = example_obs.shape
vae_rng = jax.random.PRNGKey(42)
vae_encode = jax.jit(vae.encode)
vae_decode = jax.jit(vae.decode)
if FLAGS.fid_stats is not None:
from utils.fid import get_fid_network, fid_from_stats
get_fid_activations = get_fid_network()
truth_fid_stats = np.load(FLAGS.fid_stats)
else:
get_fid_activations = None
truth_fid_stats = None
###################################
# Creating Model and put on devices.
###################################
FLAGS.model.image_channels = example_obs_shape[-1]
FLAGS.model.image_size = example_obs_shape[1]
dit_args = {
'patch_size': FLAGS.model['patch_size'],
'hidden_size': FLAGS.model['hidden_size'],
'depth': FLAGS.model['depth'],
'num_heads': FLAGS.model['num_heads'],
'mlp_ratio': FLAGS.model['mlp_ratio'],
'out_channels': example_obs_shape[-1],
'class_dropout_prob': FLAGS.model['class_dropout_prob'],
'num_classes': FLAGS.model['num_classes'],
'dropout': FLAGS.model['dropout'],
'ignore_dt': False if (FLAGS.model['train_type'] in ('shortcut', 'livereflow')) else True,
}
model_def = DiT(**dit_args)
# tabulate_fn = flax.linen.tabulate(model_def, jax.random.PRNGKey(0))
tabulate_fn = flax.linen.tabulate(model_def, rngs={"params": jax.random.PRNGKey(0), "label":jax.random.PRNGKey(0)})
print(tabulate_fn(example_obs, jnp.zeros((1,)), jnp.zeros((1,)), jnp.zeros((1,), dtype=jnp.int32)))
if FLAGS.model.use_cosine:
lr_schedule = optax.warmup_cosine_decay_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'], FLAGS.max_steps)
elif FLAGS.model.warmup > 0:
lr_schedule = optax.linear_schedule(0.0, FLAGS.model['lr'], FLAGS.model['warmup'])
else:
lr_schedule = lambda x: FLAGS.model['lr']
adam = optax.adamw(learning_rate=lr_schedule, b1=FLAGS.model['beta1'], b2=FLAGS.model['beta2'], weight_decay=FLAGS.model['weight_decay'])
tx = optax.chain(adam)
def log_param_shapes(params, label=""):
flat = flax.traverse_util.flatten_dict(params)
squeezed_flat = {k: jnp.squeeze(v, axis = 0) for k, v in flat.items() if v.shape[0] == 1}
print(f"\n{label} parameter shapes:")
for k, v in flat.items():
print(f"{k}: {v.shape}")
return flax.traverse_util.unflatten_dict(squeezed_flat)
def init(rng):
param_key, dropout_key, dropout2_key = jax.random.split(rng, 3)
example_t = jnp.zeros((1,))
example_dt = jnp.zeros((1,))
example_label = jnp.zeros((1,), dtype=jnp.int32)
example_obs = jnp.zeros(example_obs_shape)
model_rngs = {'params': param_key, 'label_dropout': dropout_key, 'dropout': dropout2_key}
params = model_def.init(model_rngs, example_obs, example_t, example_dt, example_label)['params']
opt_state = tx.init(params)
ts = TrainStateEma.create(model_def, params, rng=rng, tx=tx, opt_state=opt_state)
if FLAGS.load_dir is not None:
cp = Checkpoint(FLAGS.load_dir)
train_state_load = cp.load_as_dict()["train_state"]
log_param_shapes(ts.params)
flat = log_param_shapes(train_state_load["params"])
flat_ema = log_param_shapes(train_state_load["params_ema"])
flat_mu = log_param_shapes(train_state_load["opt_state"][0][0].mu)
flat_nu = log_param_shapes(train_state_load["opt_state"][0][0].nu)
from optax import ScaleByAdamState
opt_state = train_state_load["opt_state"]
new_state = ScaleByAdamState(
opt_state[0][0].count,
mu=flat_mu,
nu=flat_nu
)
opt_state = list(opt_state)
opt_state[0] = list(opt_state[0])
opt_state[0][0] = new_state
opt_state[0] = tuple(opt_state[0])
opt_state = tuple(opt_state)
train_state_load = TrainStateEma.create(model_def, params = flat, rng = rng, tx = tx, opt_state=opt_state)
#Need to replace EMA because we have a separate ema
log_param_shapes(train_state_load.params)
train_state_load.replace(params_ema = flat_ema)
start_step = train_state_load.step
ts = train_state_load
return ts
rng = jax.random.PRNGKey(FLAGS.seed)
train_state_shape = jax.eval_shape(init, rng)
data_sharding, train_state_sharding, no_shard, shard_data, global_to_local = create_sharding(FLAGS.model.sharding, train_state_shape)
train_state = jax.jit(init, out_shardings=train_state_sharding)(rng)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
jax.debug.visualize_array_sharding(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
jax.experimental.multihost_utils.assert_equal(train_state.params['TimestepEmbedder_1']['Dense_0']['kernel'])
start_step = 1
if False:#FLAGS.load_dir is not None:
cp = Checkpoint(FLAGS.load_dir)
replace_dict = cp.load_as_dict()['train_state']
del replace_dict['opt_state'] # Debug
train_state = train_state.replace(**replace_dict)
if FLAGS.wandb.run_id != "None": # If we are continuing a run.
start_step = train_state.step
train_state = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
print("Loaded model with step", train_state.step)
train_state = train_state.replace(step=0)
jax.debug.visualize_array_sharding(train_state.params['FinalLayer_0']['Dense_0']['kernel'])
del cp
if FLAGS.model.train_type == 'progressive' or FLAGS.model.train_type == 'consistency-distillation':
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
else:
train_state_teacher = None
visualize_labels = example_labels
visualize_labels = shard_data(visualize_labels)
visualize_labels = jax.experimental.multihost_utils.process_allgather(visualize_labels)
imagenet_labels = open('data/imagenet_labels.txt').read().splitlines()
###################################
# Update Function
###################################
@partial(jax.jit, out_shardings=(train_state_sharding, no_shard))
def update(train_state, train_state_teacher, images, labels, force_t=-1, force_dt=-1):
new_rng, targets_key, dropout_key, perm_key = jax.random.split(train_state.rng, 4)
info = {}
id_perm = jax.random.permutation(perm_key, images.shape[0])
images = images[id_perm]
labels = labels[id_perm]
images = jax.lax.with_sharding_constraint(images, data_sharding)
labels = jax.lax.with_sharding_constraint(labels, data_sharding)
if FLAGS.model['cfg_scale'] == 0: # For unconditional generation.
labels = jnp.ones(labels.shape[0], dtype=jnp.int32) * FLAGS.model['num_classes']
if FLAGS.model['train_type'] == 'naive':
from baselines.targets_naive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'shortcut':
from targets_shortcut import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'progressive':
from baselines.targets_progressive import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency-distillation':
from baselines.targets_consistency_distillation import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, train_state_teacher, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'consistency':
from baselines.targets_consistency_training import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
elif FLAGS.model['train_type'] == 'livereflow':
from baselines.targets_livereflow import get_targets
x_t, v_t, t, dt_base, labels, info = get_targets(FLAGS, targets_key, train_state, images, labels, force_t, force_dt)
def loss_fn(grad_params):
v_prime, logvars, activations = train_state.call_model(x_t, t, dt_base, labels, train=True, rngs={'dropout': dropout_key}, params=grad_params, return_activations=True)
mse_v = jnp.mean((v_prime - v_t) ** 2, axis=(1, 2, 3))
loss = jnp.mean(mse_v)
info = {
'loss': loss,
'v_magnitude_prime': jnp.sqrt(jnp.mean(jnp.square(v_prime))),
**{'activations/' + k : jnp.sqrt(jnp.mean(jnp.square(v))) for k, v in activations.items()},
}
if FLAGS.model['train_type'] == 'shortcut' or FLAGS.model['train_type'] == 'livereflow':
bootstrap_size = FLAGS.batch_size // FLAGS.model['bootstrap_every']
info['loss_flow'] = jnp.mean(mse_v[bootstrap_size:])
info['loss_bootstrap'] = jnp.mean(mse_v[:bootstrap_size])
return loss, info
grads, new_info = jax.grad(loss_fn, has_aux=True)(train_state.params)
info = {**info, **new_info}
updates, new_opt_state = train_state.tx.update(grads, train_state.opt_state, train_state.params)
new_params = optax.apply_updates(train_state.params, updates)
info['grad_norm'] = optax.global_norm(grads)
info['update_norm'] = optax.global_norm(updates)
info['param_norm'] = optax.global_norm(new_params)
info['lr'] = lr_schedule(train_state.step)
train_state = train_state.replace(rng=new_rng, step=train_state.step + 1, params=new_params, opt_state=new_opt_state)
train_state = train_state.update_ema(FLAGS.model['target_update_rate'])
return train_state, info
if FLAGS.mode != 'train':
do_inference(FLAGS, train_state, None, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
return
###################################
# Train Loop
###################################
for i in tqdm.tqdm(range(1 + start_step, FLAGS.max_steps + 1 + start_step),
smoothing=0.1,
dynamic_ncols=True):
# Sample data.
if not FLAGS.debug_overfit or i == 1:
batch_images, batch_labels = shard_data(*next(dataset))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
vae_rng, vae_key = jax.random.split(vae_rng)
batch_images = vae_encode(vae_key, batch_images)
# Train update.
train_state, update_info = update(train_state, train_state_teacher, batch_images, batch_labels)
if i % FLAGS.log_interval == 0 or i == 1:
update_info = jax.device_get(update_info)
update_info = jax.tree.map(lambda x: np.array(x), update_info)
update_info = jax.tree.map(lambda x: x.mean(), update_info)
train_metrics = {f'training/{k}': v for k, v in update_info.items()}
valid_images, valid_labels = shard_data(*next(dataset_valid))
if FLAGS.model.use_stable_vae and 'latent' not in FLAGS.dataset_name:
valid_images = vae_encode(vae_rng, valid_images)
_, valid_update_info = update(train_state, train_state_teacher, valid_images, valid_labels)
valid_update_info = jax.device_get(valid_update_info)
valid_update_info = jax.tree_map(lambda x: x.mean(), valid_update_info)
train_metrics['training/loss_valid'] = valid_update_info['loss']
if jax.process_index() == 0:
wandb.log(train_metrics, step=i)
if FLAGS.model['train_type'] == 'progressive':
num_sections = np.log2(FLAGS.model['denoise_timesteps']).astype(jnp.int32)
if i % (FLAGS.max_steps // num_sections) == 0:
train_state_teacher = jax.jit(lambda x : x, out_shardings=train_state_sharding)(train_state)
if i % FLAGS.eval_interval == 0:
eval_model(FLAGS, train_state, train_state_teacher, i, dataset, dataset_valid, shard_data, vae_encode, vae_decode, update,
get_fid_activations, imagenet_labels, visualize_labels,
fid_from_stats, truth_fid_stats)
if i % FLAGS.save_interval == 0 and FLAGS.save_dir is not None:
train_state_gather = jax.experimental.multihost_utils.process_allgather(train_state)
#This all gather might be parto f the reason the shape is odd
if jax.process_index() == 0:
cp = Checkpoint(FLAGS.save_dir+str(train_state_gather.step+1), parallel=False)
cp.train_state = train_state_gather
cp.save()
del cp
del train_state_gather
if __name__ == '__main__':
app.run(main)