--- language: - ar license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-large model-index: - name: Whisper Large ar - Mohammed Nasri results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ar split: test args: 'config: ar, split: test' metrics: - type: wer value: 15.925898119298774 name: Wer --- # Whisper Large ar - Mohammed Nasri This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1784 - Wer: 15.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1936 | 0.21 | 1000 | 0.2391 | 20.6427 | | 0.1254 | 0.42 | 2000 | 0.1784 | 15.9259 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3