--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: whisper-small-fa results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: fa split: None args: fa metrics: - name: Wer type: wer value: 90.06211180124224 --- # whisper-small-fa This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.9732 - Wer: 90.0621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 2.6378 | 1.3158 | 25 | 2.1569 | 91.3043 | | 1.1123 | 2.6316 | 50 | 1.9732 | 90.0621 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1