File size: 16,153 Bytes
f770010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
from abc import abstractmethod, abstractproperty
from typing import List, Optional, Tuple, Union
from parso.utils import split_lines
def search_ancestor(node: 'NodeOrLeaf', *node_types: str) -> 'Optional[BaseNode]':
"""
Recursively looks at the parents of a node and returns the first found node
that matches ``node_types``. Returns ``None`` if no matching node is found.
This function is deprecated, use :meth:`NodeOrLeaf.search_ancestor` instead.
:param node: The ancestors of this node will be checked.
:param node_types: type names that are searched for.
"""
n = node.parent
while n is not None:
if n.type in node_types:
return n
n = n.parent
return None
class NodeOrLeaf:
"""
The base class for nodes and leaves.
"""
__slots__ = ('parent',)
type: str
'''
The type is a string that typically matches the types of the grammar file.
'''
parent: 'Optional[BaseNode]'
'''
The parent :class:`BaseNode` of this node or leaf.
None if this is the root node.
'''
def get_root_node(self):
"""
Returns the root node of a parser tree. The returned node doesn't have
a parent node like all the other nodes/leaves.
"""
scope = self
while scope.parent is not None:
scope = scope.parent
return scope
def get_next_sibling(self):
"""
Returns the node immediately following this node in this parent's
children list. If this node does not have a next sibling, it is None
"""
parent = self.parent
if parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(parent.children):
if child is self:
try:
return self.parent.children[i + 1]
except IndexError:
return None
def get_previous_sibling(self):
"""
Returns the node immediately preceding this node in this parent's
children list. If this node does not have a previous sibling, it is
None.
"""
parent = self.parent
if parent is None:
return None
# Can't use index(); we need to test by identity
for i, child in enumerate(parent.children):
if child is self:
if i == 0:
return None
return self.parent.children[i - 1]
def get_previous_leaf(self):
"""
Returns the previous leaf in the parser tree.
Returns `None` if this is the first element in the parser tree.
"""
if self.parent is None:
return None
node = self
while True:
c = node.parent.children
i = c.index(node)
if i == 0:
node = node.parent
if node.parent is None:
return None
else:
node = c[i - 1]
break
while True:
try:
node = node.children[-1]
except AttributeError: # A Leaf doesn't have children.
return node
def get_next_leaf(self):
"""
Returns the next leaf in the parser tree.
Returns None if this is the last element in the parser tree.
"""
if self.parent is None:
return None
node = self
while True:
c = node.parent.children
i = c.index(node)
if i == len(c) - 1:
node = node.parent
if node.parent is None:
return None
else:
node = c[i + 1]
break
while True:
try:
node = node.children[0]
except AttributeError: # A Leaf doesn't have children.
return node
@abstractproperty
def start_pos(self) -> Tuple[int, int]:
"""
Returns the starting position of the prefix as a tuple, e.g. `(3, 4)`.
:return tuple of int: (line, column)
"""
@abstractproperty
def end_pos(self) -> Tuple[int, int]:
"""
Returns the end position of the prefix as a tuple, e.g. `(3, 4)`.
:return tuple of int: (line, column)
"""
@abstractmethod
def get_start_pos_of_prefix(self):
"""
Returns the start_pos of the prefix. This means basically it returns
the end_pos of the last prefix. The `get_start_pos_of_prefix()` of the
prefix `+` in `2 + 1` would be `(1, 1)`, while the start_pos is
`(1, 2)`.
:return tuple of int: (line, column)
"""
@abstractmethod
def get_first_leaf(self):
"""
Returns the first leaf of a node or itself if this is a leaf.
"""
@abstractmethod
def get_last_leaf(self):
"""
Returns the last leaf of a node or itself if this is a leaf.
"""
@abstractmethod
def get_code(self, include_prefix=True):
"""
Returns the code that was the input for the parser for this node.
:param include_prefix: Removes the prefix (whitespace and comments) of
e.g. a statement.
"""
def search_ancestor(self, *node_types: str) -> 'Optional[BaseNode]':
"""
Recursively looks at the parents of this node or leaf and returns the
first found node that matches ``node_types``. Returns ``None`` if no
matching node is found.
:param node_types: type names that are searched for.
"""
node = self.parent
while node is not None:
if node.type in node_types:
return node
node = node.parent
return None
def dump(self, *, indent: Optional[Union[int, str]] = 4) -> str:
"""
Returns a formatted dump of the parser tree rooted at this node or leaf. This is
mainly useful for debugging purposes.
The ``indent`` parameter is interpreted in a similar way as :py:func:`ast.dump`.
If ``indent`` is a non-negative integer or string, then the tree will be
pretty-printed with that indent level. An indent level of 0, negative, or ``""``
will only insert newlines. ``None`` selects the single line representation.
Using a positive integer indent indents that many spaces per level. If
``indent`` is a string (such as ``"\\t"``), that string is used to indent each
level.
:param indent: Indentation style as described above. The default indentation is
4 spaces, which yields a pretty-printed dump.
>>> import parso
>>> print(parso.parse("lambda x, y: x + y").dump())
Module([
Lambda([
Keyword('lambda', (1, 0)),
Param([
Name('x', (1, 7), prefix=' '),
Operator(',', (1, 8)),
]),
Param([
Name('y', (1, 10), prefix=' '),
]),
Operator(':', (1, 11)),
PythonNode('arith_expr', [
Name('x', (1, 13), prefix=' '),
Operator('+', (1, 15), prefix=' '),
Name('y', (1, 17), prefix=' '),
]),
]),
EndMarker('', (1, 18)),
])
"""
if indent is None:
newline = False
indent_string = ''
elif isinstance(indent, int):
newline = True
indent_string = ' ' * indent
elif isinstance(indent, str):
newline = True
indent_string = indent
else:
raise TypeError(f"expect 'indent' to be int, str or None, got {indent!r}")
def _format_dump(node: NodeOrLeaf, indent: str = '', top_level: bool = True) -> str:
result = ''
node_type = type(node).__name__
if isinstance(node, Leaf):
result += f'{indent}{node_type}('
if isinstance(node, ErrorLeaf):
result += f'{node.token_type!r}, '
elif isinstance(node, TypedLeaf):
result += f'{node.type!r}, '
result += f'{node.value!r}, {node.start_pos!r}'
if node.prefix:
result += f', prefix={node.prefix!r}'
result += ')'
elif isinstance(node, BaseNode):
result += f'{indent}{node_type}('
if isinstance(node, Node):
result += f'{node.type!r}, '
result += '['
if newline:
result += '\n'
for child in node.children:
result += _format_dump(child, indent=indent + indent_string, top_level=False)
result += f'{indent}])'
else: # pragma: no cover
# We shouldn't ever reach here, unless:
# - `NodeOrLeaf` is incorrectly subclassed else where
# - or a node's children list contains invalid nodes or leafs
# Both are unexpected internal errors.
raise TypeError(f'unsupported node encountered: {node!r}')
if not top_level:
if newline:
result += ',\n'
else:
result += ', '
return result
return _format_dump(self)
class Leaf(NodeOrLeaf):
'''
Leafs are basically tokens with a better API. Leafs exactly know where they
were defined and what text preceeds them.
'''
__slots__ = ('value', 'line', 'column', 'prefix')
prefix: str
def __init__(self, value: str, start_pos: Tuple[int, int], prefix: str = '') -> None:
self.value = value
'''
:py:func:`str` The value of the current token.
'''
self.start_pos = start_pos
self.prefix = prefix
'''
:py:func:`str` Typically a mixture of whitespace and comments. Stuff
that is syntactically irrelevant for the syntax tree.
'''
self.parent: Optional[BaseNode] = None
'''
The parent :class:`BaseNode` of this leaf.
'''
@property
def start_pos(self) -> Tuple[int, int]:
return self.line, self.column
@start_pos.setter
def start_pos(self, value: Tuple[int, int]) -> None:
self.line = value[0]
self.column = value[1]
def get_start_pos_of_prefix(self):
previous_leaf = self.get_previous_leaf()
if previous_leaf is None:
lines = split_lines(self.prefix)
# + 1 is needed because split_lines always returns at least [''].
return self.line - len(lines) + 1, 0 # It's the first leaf.
return previous_leaf.end_pos
def get_first_leaf(self):
return self
def get_last_leaf(self):
return self
def get_code(self, include_prefix=True):
if include_prefix:
return self.prefix + self.value
else:
return self.value
@property
def end_pos(self) -> Tuple[int, int]:
lines = split_lines(self.value)
end_pos_line = self.line + len(lines) - 1
# Check for multiline token
if self.line == end_pos_line:
end_pos_column = self.column + len(lines[-1])
else:
end_pos_column = len(lines[-1])
return end_pos_line, end_pos_column
def __repr__(self):
value = self.value
if not value:
value = self.type
return "<%s: %s>" % (type(self).__name__, value)
class TypedLeaf(Leaf):
__slots__ = ('type',)
def __init__(self, type, value, start_pos, prefix=''):
super().__init__(value, start_pos, prefix)
self.type = type
class BaseNode(NodeOrLeaf):
"""
The super class for all nodes.
A node has children, a type and possibly a parent node.
"""
__slots__ = ('children',)
def __init__(self, children: List[NodeOrLeaf]) -> None:
self.children = children
"""
A list of :class:`NodeOrLeaf` child nodes.
"""
self.parent: Optional[BaseNode] = None
'''
The parent :class:`BaseNode` of this node.
None if this is the root node.
'''
for child in children:
child.parent = self
@property
def start_pos(self) -> Tuple[int, int]:
return self.children[0].start_pos
def get_start_pos_of_prefix(self):
return self.children[0].get_start_pos_of_prefix()
@property
def end_pos(self) -> Tuple[int, int]:
return self.children[-1].end_pos
def _get_code_for_children(self, children, include_prefix):
if include_prefix:
return "".join(c.get_code() for c in children)
else:
first = children[0].get_code(include_prefix=False)
return first + "".join(c.get_code() for c in children[1:])
def get_code(self, include_prefix=True):
return self._get_code_for_children(self.children, include_prefix)
def get_leaf_for_position(self, position, include_prefixes=False):
"""
Get the :py:class:`parso.tree.Leaf` at ``position``
:param tuple position: A position tuple, row, column. Rows start from 1
:param bool include_prefixes: If ``False``, ``None`` will be returned if ``position`` falls
on whitespace or comments before a leaf
:return: :py:class:`parso.tree.Leaf` at ``position``, or ``None``
"""
def binary_search(lower, upper):
if lower == upper:
element = self.children[lower]
if not include_prefixes and position < element.start_pos:
# We're on a prefix.
return None
# In case we have prefixes, a leaf always matches
try:
return element.get_leaf_for_position(position, include_prefixes)
except AttributeError:
return element
index = int((lower + upper) / 2)
element = self.children[index]
if position <= element.end_pos:
return binary_search(lower, index)
else:
return binary_search(index + 1, upper)
if not ((1, 0) <= position <= self.children[-1].end_pos):
raise ValueError('Please provide a position that exists within this node.')
return binary_search(0, len(self.children) - 1)
def get_first_leaf(self):
return self.children[0].get_first_leaf()
def get_last_leaf(self):
return self.children[-1].get_last_leaf()
def __repr__(self):
code = self.get_code().replace('\n', ' ').replace('\r', ' ').strip()
return "<%s: %s@%s,%s>" % \
(type(self).__name__, code, self.start_pos[0], self.start_pos[1])
class Node(BaseNode):
"""Concrete implementation for interior nodes."""
__slots__ = ('type',)
def __init__(self, type, children):
super().__init__(children)
self.type = type
def __repr__(self):
return "%s(%s, %r)" % (self.__class__.__name__, self.type, self.children)
class ErrorNode(BaseNode):
"""
A node that contains valid nodes/leaves that we're follow by a token that
was invalid. This basically means that the leaf after this node is where
Python would mark a syntax error.
"""
__slots__ = ()
type = 'error_node'
class ErrorLeaf(Leaf):
"""
A leaf that is either completely invalid in a language (like `$` in Python)
or is invalid at that position. Like the star in `1 +* 1`.
"""
__slots__ = ('token_type',)
type = 'error_leaf'
def __init__(self, token_type, value, start_pos, prefix=''):
super().__init__(value, start_pos, prefix)
self.token_type = token_type
def __repr__(self):
return "<%s: %s:%s, %s>" % \
(type(self).__name__, self.token_type, repr(self.value), self.start_pos)
|