--- base_model: dmis-lab/selfbiorag_7b tags: - trl - dpo - generated_from_trainer model-index: - name: selfbiorag-7b-dpo-full-wo-kqa_golden-ep3 results: [] --- # selfbiorag-7b-dpo-full-wo-kqa_golden-ep3 This model is a fine-tuned version of [dmis-lab/selfbiorag_7b](https://huggingface.co/dmis-lab/selfbiorag_7b) on an unknown dataset. It achieves the following results on the evaluation set: - Logits/chosen: -1.8108 - Logits/rejected: -1.5449 - Logps/chosen: -121.3720 - Logps/rejected: -144.0564 - Loss: 0.6355 - Rewards/accuracies: 0.7326 - Rewards/chosen: 0.1376 - Rewards/margins: 0.1371 - Rewards/rejected: 0.0005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected | |:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:| | 0.6595 | 0.22 | 100 | -1.7720 | -1.4957 | -124.0620 | -139.3042 | 0.6647 | 0.6875 | 0.1107 | 0.0627 | 0.0480 | | 0.6273 | 0.45 | 200 | -1.7316 | -1.4653 | -119.3853 | -138.4957 | 0.6494 | 0.6979 | 0.1574 | 0.1013 | 0.0561 | | 0.6009 | 0.67 | 300 | -1.7770 | -1.5098 | -120.2743 | -141.8649 | 0.6398 | 0.7188 | 0.1485 | 0.1262 | 0.0224 | | 0.6003 | 0.9 | 400 | -1.8108 | -1.5449 | -121.3720 | -144.0564 | 0.6355 | 0.7326 | 0.1376 | 0.1371 | 0.0005 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2