--- base_model: dmis-lab/selfbiorag_7b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/deita-10k-v0-sft model-index: - name: selfbiorag-7b-1e-6-wo-kqa_golden-iter-sft-step1_lr results: [] --- # selfbiorag-7b-1e-6-wo-kqa_golden-iter-sft-step1_lr This model is a fine-tuned version of [dmis-lab/selfbiorag_7b](https://huggingface.co/dmis-lab/selfbiorag_7b) on the HuggingFaceH4/deita-10k-v0-sft dataset. It achieves the following results on the evaluation set: - Loss: 1.3816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.438 | 0.91 | 5 | 1.4282 | | 1.3992 | 2.0 | 11 | 1.3832 | | 1.3839 | 2.73 | 15 | 1.3816 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2