--- tags: autotrain language: unk widget: - text: "ACE2 overexpression in AAV cell lines" datasets: - Mim/autotrain-data-procell-expert co2_eq_emissions: 0.004814823138367317 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 800724769 - CO2 Emissions (in grams): 0.004814823138367317 ## Validation Metrics - Loss: 0.4749071002006531 - Accuracy: 0.9 - Precision: 0.8928571428571429 - Recall: 0.9615384615384616 - AUC: 0.9065934065934066 - F1: 0.9259259259259259 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Mim/autotrain-procell-expert-800724769 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Mim/autotrain-procell-expert-800724769", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Mim/autotrain-procell-expert-800724769", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```