--- license: mit library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - gte - mteb datasets: - Mihaiii/qa-assistant --- # Bulbasaur This is a distill of [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny) trained using [qa-assistant](https://huggingface.co/datasets/Mihaiii/qa-assistant). ## Intended purpose This model is designed for use in semantic-autocomplete ([click here for demo](https://mihaiii.github.io/semantic-autocomplete/)). ## Usage (Sentence-Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny)) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Mihaiii/Bulbasaur') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) (same as [gte-tiny](https://huggingface.co/TaylorAI/gte-tiny)) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Mihaiii/Bulbasaur') model = AutoModel.from_pretrained('Mihaiii/Bulbasaur') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ### Limitation (same as [gte-small](https://huggingface.co/thenlper/gte-small)) This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.