from urllib import response import nltk from nltk.stem.lancaster import LancasterStemmer stemmer = LancasterStemmer() import numpy import tflearn import tensorflow import random import json import pickle with open("intents.json") as file: data = json.load(file) try: with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except: words = [] labels = [] docs_x = [] docs_y = [] for intent in data["intents"]: for pattern in intent["patterns"]: wrds = nltk.word_tokenize(pattern) words.extend(wrds) docs_x.append(wrds) docs_y.append(intent["tag"]) if intent["tag"] not in labels: labels.append(intent["tag"]) words = [stemmer.stem(w.lower()) for w in words if w != "?"] words = sorted(list(set(words))) labels = sorted(labels) training = [] output = [] out_empty = [0 for _ in range(len(labels))] for x, doc in enumerate(docs_x): bag = [] wrds = [stemmer.stem(w.lower()) for w in doc] for w in words: if w in wrds: bag.append(1) else: bag.append(0) output_row = out_empty[:] output_row[labels.index(docs_y[x])] = 1 training.append(bag) output.append(output_row) training = numpy.array(training) output = numpy.array(output) with open("data.pickle", "wb") as f: pickle.dump((words, labels, training, output), f) net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) model = tflearn.DNN(net) try: model.load("model.tflearn") except: model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True) model.save("model.tflearn") def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = nltk.word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return numpy.array(bag) def chat(): print("Start talking with the bot (type quit to stop)!") while True: inp = input("You: ") if inp.lower() == "quit": break results = model.predict([bag_of_words(inp, words)]) results_index = numpy.argmax(results) tag = labels[results_index] for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] print(random.choice(responses)) chat()