--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer datasets: - race model-index: - name: flan-small-mc-question-options-generation results: [] inference: parameters: max_length: 512 num_beams: 4 length_penalty: 1.5 no_repeat_ngram_size: 3 early_stopping: True --- # flan-small-mc-question-options-generation This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the race dataset. It achieves the following results on the evaluation set: - Loss: 1.5747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3811 | 0.07 | 100 | 2.4007 | | 2.5622 | 0.15 | 200 | 2.0431 | | 2.2498 | 0.22 | 300 | 1.9139 | | 2.1136 | 0.29 | 400 | 1.8218 | | 2.0392 | 0.36 | 500 | 1.7739 | | 1.9984 | 0.44 | 600 | 1.7237 | | 1.9519 | 0.51 | 700 | 1.7058 | | 1.928 | 0.58 | 800 | 1.6900 | | 1.9075 | 0.66 | 900 | 1.6687 | | 1.8968 | 0.73 | 1000 | 1.6631 | | 1.8758 | 0.8 | 1100 | 1.6519 | | 1.8863 | 0.87 | 1200 | 1.6431 | | 1.869 | 0.95 | 1300 | 1.6409 | | 1.8483 | 1.02 | 1400 | 1.6313 | | 1.8344 | 1.09 | 1500 | 1.6279 | | 1.8398 | 1.17 | 1600 | 1.6183 | | 1.8247 | 1.24 | 1700 | 1.6223 | | 1.8131 | 1.31 | 1800 | 1.6072 | | 1.8024 | 1.38 | 1900 | 1.6096 | | 1.8038 | 1.46 | 2000 | 1.6056 | | 1.8051 | 1.53 | 2100 | 1.6030 | | 1.7875 | 1.6 | 2200 | 1.6008 | | 1.7983 | 1.68 | 2300 | 1.5923 | | 1.7922 | 1.75 | 2400 | 1.5917 | | 1.7892 | 1.82 | 2500 | 1.5903 | | 1.784 | 1.89 | 2600 | 1.5891 | | 1.7844 | 1.97 | 2700 | 1.5867 | | 1.7678 | 2.04 | 2800 | 1.5837 | | 1.7558 | 2.11 | 2900 | 1.5826 | | 1.7702 | 2.19 | 3000 | 1.5820 | | 1.7669 | 2.26 | 3100 | 1.5802 | | 1.7715 | 2.33 | 3200 | 1.5763 | | 1.7724 | 2.4 | 3300 | 1.5799 | | 1.757 | 2.48 | 3400 | 1.5783 | | 1.7648 | 2.55 | 3500 | 1.5763 | | 1.7691 | 2.62 | 3600 | 1.5772 | | 1.7607 | 2.69 | 3700 | 1.5758 | | 1.7574 | 2.77 | 3800 | 1.5745 | | 1.7586 | 2.84 | 3900 | 1.5748 | | 1.7583 | 2.91 | 4000 | 1.5745 | | 1.7611 | 2.99 | 4100 | 1.5747 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3