from typing import Dict, Any from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer import torch class EndpointHandler: def __init__(self, path=""): model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) # load model and processor from path self.model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) self.tokenizer = AutoTokenizer.from_pretrained(model_id) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:dict:): The payload with the text prompt and generation parameters. """ # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) inputs = f"[INST] {inputs} [/INST]" # preprocess inputs = self.tokenizer(inputs, return_tensors="pt") inputs = inputs.to(self.model.device) # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(inputs, **parameters) else: outputs = self.model.generate(inputs) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]