--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:16186 - loss:MultipleNegativesRankingLoss base_model: nvidia/NV-Embed-v2 widget: - source_sentence: 'Instruct: Given a question, retrieve passages that answer the question. Query: what is the numeric dose of the Pembrolizumab Regimen?' sentences: - "Source: Radiology. Date: 2019-11-06. Context: 11/06/2019 1:03:20 PM -0500496d70726f7665204865616c7468\ \ PAGE 2 OF 3\n ________ ________ ________\n___ _____ ___ _____ _____, __\ \ _____-____\nIMAGING SERVICES\nPatient Name: Exam Date/Time: Phone _: \ \ MRN:\nYoung, _______ _______ 11/06/2019 11:50 AM ___-___-____ ______\n\ DOB: Se Account _:\n11/3/1939 Female _________\nPt Class: Accession\ \ _: Performing Department:\nOutpatient _________ MRI - FMH\nPrimary\ \ Care Provider: Ordering Provider: Authorizing Provider:\n______, ____\ \ _ ______, _______ _ ______, _______ _\nLaterality:\n9 Final - MRI BRAIN\ \ W/WO CONT" - 'Source: SOAP_Note. Date: 2022-01-30. Context: _12 TAB Prov: 01/19/22 D: 01/23/22 1545 Patient stopped taking Reported Medications ONDANSETRON (ZOFRAN) 4 MG PO Q6H Metoprolol Succinate (TOPROL XL) 50 MG PO DAILY predniSONE 5 MG PO DAILY TRAMETINIB DIMETHYL SULFOXIDE (MEKINIST) 2 MG PO DAILY DABRAFENIB MESYLATE (TAFINLAR) 100 MG PO BID LOSARTAN (COZAAR) 50 MG PO DAILY MIRTAZAPINE (REMERON) 7.5 MG PO BEDTIME MED LIST INFORMATION 1 EA - CANCEL AT DISCHARGE Additional Medical History PMH: Stage 4 Melanoma Cancer Additional Surgical History ' - "Source: SOAP_Note. Date: 2024-02-17. Context: 60 mg-90 mg-500 mg) qd \n* Metoprolol\ \ Oral 24 hr Tab (Succinate) 25 mg tablet extended release 24 hr \n Regimens:\n\ \ Pembrolizumab Q21D (Flat Dose) (Adjuvant Melanoma, RCC)\n Hydration IV and Electrolyte\ \ Replacement Supportive Care\n \n \n \n Allergies\n " - source_sentence: 'Instruct: Given a question, retrieve passages that answer the question. Query: how many Radiation Therapy fractions were administered?' sentences: - "Source: SOAP_Note. Date: 2024-10-03. Context: PET with large volume metastatic\ \ disease involving the bones, soft tissue, and lung parenchyma bilaterally.\n\ \ - Radiation therapy left shoulder, right SI joint, right femur completed 1/5/22.\n\ \ - Nivolumab and ipilimumab initiated 11/24/21. " - 'Source: SOAP_Note. Date: 2019-08-21. Context: 4 weeks, Print on Rx., Instructions/Comments: nivolumab. [Updated. _______ _. _____ 08/21/2019 13:56]. Cancer Regimens Nivolumab Q28D (Flat Dose, Adjuvant Melanoma): C2D1. [_______ _. _____ 08/21/2019 15:18].I.V. access: peripheral IV, Site: ' - "Source: SOAP_Note. Date: 2023-11-27. Context: per day, down from 1.5 ppd. He\ \ has been smoking for the past 40 years.\n He denies alcohol use.\n He worked\ \ for ____ ______ / _____ _____ _____ \n \n FAMILY HISTORY:\n Mother,\ \ age 94, Merkle cell carcinoma in her 70s. Daughter, age 52, brain tumor.\n Father,\ \ deceased at age 66, heart disease.\n \n REVIEW OF SYSTEMS: A comprehensive\ \ (10+) review of systems was performed today and was negative unless noted above.\n\ \ \n VITALS: Blood pressure: 128/79, Sitting, Regular, Pulse: 110, " - source_sentence: 'Instruct: Given a question, retrieve passages that answer the question. Query: when did the Dabrafenib Regimen start?' sentences: - 'Source: SOAP_Note. Date: 2018-11-29. Context: Take 1 PO daily, Instructions: Take at least 1 hour before or two hours after a meal. [______ ______ 12/26/2018 13:46].Dabrafenib mesylate, po solid: 75 mg Capsule Take 2 PO BID, Instructions: Take whole, at least 1 hour before or two hours after a ' - "Source: Pathology. Date: 2021-06-22. Context: Referral: SECONDARY AND UNSPECIFIED\ \ MALIGNANT NEOPLASM OF LYMPH\nNODE, UNSPECIFIED\nFX4\nResults HEENT: \n\ HEE BRAF V600E\nNot Expressed\n1\n\n M\n19 \n1.10 78\nH\n\n1\n* A \ \ \nA\nI \nIntended Use:\nStains were scored by a pathologist using " - "Source: SOAP_Note. Date: 2024-09-16. Context: \ \ Mr. _____ is married and he lives with his wife in _____ _____, __.\n The\ \ patient has cut back to 5 cigarettes per day, down from 1.5 ppd. He has been\ \ smoking for the past 40 years.\n He denies alcohol use.\n He worked for Duke\ \ Energy / " - source_sentence: 'Instruct: Given a question, retrieve passages that answer the question. Query: when was the Reexcision performed?' sentences: - "Source: SOAP_Note. Date: 2024-06-13. Context: scan showed cutaneous involvement\ \ in the skin and also right inguinal adenopathy. No evidence of distant metastases.\ \ Opdualag _1.\n \n 10/03/2023: The patient complains of vertigo and wants to\ \ delay her next treatment. We will add Dramamine.\n \n " - "Source: Pathology. Date: 2022-03-23. Context: MD ______, _______\n________\ \ ____ _________ - _______ ____ DOB: 09/14/1959\n______ ____ __ ____ Rd\ \ Age: 62\n__ _____ ___ Sex: Male\n___ _____, __ _____\n___-___-____\n\ \ 8 Accession _: ____-_____\nCollection Date: 03/23/2022\nollection Date:\ \ 03/23/ MRN: _____\nReceived Date: 03/23/2022\nReported Date: 03/24/2022\n\ SKIN, MID FRONTAL SCALP, EXCISION -\nNO EVIDENCE OF MALIGNANCY, FINAL MARGINS\ \ FREE OF TUMOR.\nSEE COMMENT.\nComment: Portions of deep subcutaneous fat and\ \ fascia are seen, all free of malignancy.\n\n_______ _. ______, MD\n**Electronically\ \ Signed on 24 MAR 2022 12:03PM** 8\nCLINICAL DATA:\nMID FRONTAL SCALP - EXCISION" - "Source: Genetic_Testing. Date: 2023-08-21. Context: and a STERETCHING\nvariants\ \ including genes associated wi 08 in 7/31 \n18 comination repair deficiency\ \ * fusion NTR2 on \n11 (HR/HRD, microsatellite instability (MS gain\ \ Eston\nare umr mutational surgen 3. Kat " - source_sentence: 'Instruct: Given a question, retrieve passages that answer the question. Query: what is the total dose administered in the EBRT Intensity Modulated Radiation Therapy?' sentences: - "Source: SOAP_Note. Date: 2022-10-10. Context: given. \n \n Interim History\n\ \ \n _____ was last seen on 09/16/2022, at which time he started adjuvant immunotherapy\ \ with Keytruda q21 days. Here today for follow up and labs prior to C2 of treatment.\ \ States he is overall feeling well. Tolerated the " - "Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.\n \n FIELDS:\n The\ \ right orbital mass and right cervical lymph nodes were initially treated with\ \ a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees\ \ / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start " - "Source: Radiology. Date: 2023-09-18. Context: : >60\n \n Contrast Type: OMNI\ \ 350\n Volume: 80ML\n \n Lot_: ________\n \n Exp. date: 05/26 \n Study Completed:\ \ CT CHEST W\n \n Reading Group:BCH \n \n Prior Studies for Comparison: 06/14/23\ \ CT CHEST W RMCC \n \n ________ ______\n " pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on nvidia/NV-Embed-v2 results: - task: type: patient-qa name: Patient QA dataset: name: ontada test type: ontada-test metrics: - type: cosine_accuracy@1 value: 0.6856459330143541 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9531100478468899 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.990909090909091 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6856459330143541 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.5208931419457735 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.39693779904306226 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.22511961722488041 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.4202789169894433 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8154078377762588 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9453700539226855 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0046297562087037 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8649347118737546 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8190546441862219 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.804978870109979 name: Cosine Map@100 --- # SentenceTransformer based on nvidia/NV-Embed-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nvidia/NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2). It maps sentences & paragraphs to a 4096-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nvidia/NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2) - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 4096 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: NVEmbedModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("MendelAI/nv-embed-v2-ontada-twab-peft") # Run inference sentences = [ 'Instruct: Given a question, retrieve passages that answer the question. Query: what is the total dose administered in the EBRT Intensity Modulated Radiation Therapy?', 'Source: SOAP_Note. Date: 2020-03-13. Context: MV electrons.\n \n FIELDS:\n The right orbital mass and right cervical lymph nodes were initially treated with a two arc IMRT plan. Arc 1: 11.4 x 21 cm. Gantry start and stop angles 178 degrees / 182 degrees. Arc 2: 16.4 x 13.0 cm. Gantry start ', 'Source: Radiology. Date: 2023-09-18. Context: : >60\n \n Contrast Type: OMNI 350\n Volume: 80ML\n \n Lot_: ________\n \n Exp. date: 05/26 \n Study Completed: CT CHEST W\n \n Reading Group:BCH \n \n Prior Studies for Comparison: 06/14/23 CT CHEST W RMCC \n \n ________ ______\n ', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Patient QA * Dataset: `ontada-test` * Evaluated with [PatientQAEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.PatientQAEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6856 | | cosine_accuracy@3 | 0.9531 | | cosine_accuracy@5 | 0.9909 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.6856 | | cosine_precision@3 | 0.5209 | | cosine_precision@5 | 0.3969 | | cosine_precision@10 | 0.2251 | | cosine_recall@1 | 0.4203 | | cosine_recall@3 | 0.8154 | | cosine_recall@5 | 0.9454 | | cosine_recall@10 | 1.0046 | | **cosine_ndcg@10** | **0.8649** | | cosine_mrr@10 | 0.8191 | | cosine_map@100 | 0.805 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 16,186 training samples * Columns: question and context * Approximate statistics based on the first 1000 samples: | | question | context | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | question | context | |:------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? | Source: Genetic_Testing. Date: 2022-10-07. Context: Mutational Seq DNA-Tumor Low, 6 mt/Mb NF1
Seq DNA-Tumor Mutation Not Detected
T In Not D
ARID2 Seq DNA-Tumor Mutation Not Detected CNA-Seq DNA-Tumor Deletion Not Detected
PTEN
Seq RNA-Tumor Fusion Not Detected Seq DNA-Tumor Mutation Not Detected
BRAF
Amplification Not _
CNA-Seq DNA-Tumor Detected RAC1 Seq DNA-Tumor Mutation Not Detected
The selection of any, all, or none of the matched therapies
| | Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? | Source: Genetic_Testing. Date: 2021-06-04. Context: characteristics have been determined by _____ ___________
_______ _________ ___ ____ __________. It has not been
cleared or approved by FDA. This assay has been validated
pursuant to the CLIA regulations and is used for clinical
purposes.
BRAF MUTATION ANALYSIS E
SOURCE: LYMPH NODE
PARAFFIN BLOCK NUMBER: ____-_______ A4
BRAF MUTATION ANALYSIS NOT DETECTED NOT DETECTED
This result was reviewed and interpreted by _. ____, M.D.
Based on Sanger sequencing analysis, no mutations
| | Instruct: Given a question, retrieve passages that answer the question. Query: what was the abnormality identified for BRAF? | Source: Pathology. Date: 2019-12-12. Context: Receive Date: 12/12/2019
___ _: ________________ Accession Date: 12/12/2019
Copy To: Report Date: 12/19/2019 18:16
***SUPPLEMENTAL REPORT***
(previous report date: 12/19/2019)
BRAF SNAPSHOT
Results:
POSITIVE
Interpretation:
A BRAF mutation was detected in the provided specimen.
FDA has approved TKI inhibitor vemurafenib and dabrafenib for the first-line treatment of patients with
unresectable or metastatic melanoma whose tumors have a BRAF V600E mutation, and trametinib for tumors
| * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 64 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 6789 - `bf16`: True - `prompts`: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '} - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 4 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 6789 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `prompts`: {'question': 'Instruct: Given a question, retrieve passages that answer the question. Query: '} - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | ontada-test_cosine_ndcg@10 | |:------:|:----:|:-------------:|:--------------------------:| | 0 | 0 | - | 0.8431 | | 0.0002 | 1 | 1.5826 | - | | 0.0371 | 150 | 0.4123 | - | | 0.0741 | 300 | 0.3077 | - | | 0.1112 | 450 | 0.2184 | - | | 0.1483 | 600 | 0.3291 | - | | 0.1853 | 750 | 0.2343 | - | | 0.2224 | 900 | 0.2506 | - | | 0.2471 | 1000 | - | 0.8077 | | 0.2595 | 1050 | 0.1294 | - | | 0.2965 | 1200 | 0.0158 | - | | 0.3336 | 1350 | 0.0189 | - | | 0.3706 | 1500 | 0.0363 | - | | 0.4077 | 1650 | 0.0208 | - | | 0.4448 | 1800 | 0.475 | - | | 0.4818 | 1950 | 0.6183 | - | | 0.4942 | 2000 | - | 0.8482 | | 0.5189 | 2100 | 0.4779 | - | | 0.5560 | 2250 | 0.4194 | - | | 0.5930 | 2400 | 0.8376 | - | | 0.6301 | 2550 | 0.4249 | - | | 0.6672 | 2700 | 0.9336 | - | | 0.7042 | 2850 | 0.5351 | - | | 0.7413 | 3000 | 1.0253 | 0.8551 | | 0.7784 | 3150 | 0.3961 | - | | 0.8154 | 3300 | 0.3881 | - | | 0.8525 | 3450 | 0.5573 | - | | 0.8895 | 3600 | 1.222 | - | | 0.9266 | 3750 | 0.3032 | - | | 0.9637 | 3900 | 0.3142 | - | | 0.9884 | 4000 | - | 0.8645 | | 1.0 | 4047 | - | 0.8649 | ### Framework Versions - Python: 3.11.10 - Sentence Transformers: 3.4.0.dev0 - Transformers: 4.46.0 - PyTorch: 2.3.1+cu121 - Accelerate: 1.0.1 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```