--- license: mit base_model: microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL tags: - generated_from_keras_callback model-index: - name: Meli101/krissbert-sentence-classifier results: [] --- # Meli101/krissbert-sentence-classifier This model is a fine-tuned version of [microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL](https://huggingface.co/microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1489 - Validation Loss: 0.2873 - Train Precision: 0.9170 - Train Recall: 0.9151 - Train Accuracy: 0.9154 - Train F1: 0.9151 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1535, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train Accuracy | Train F1 | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------------:|:--------:|:-----:| | 0.5011 | 0.3717 | 0.8777 | 0.8711 | 0.8723 | 0.8724 | 0 | | 0.2382 | 0.3152 | 0.9012 | 0.8984 | 0.8991 | 0.8991 | 1 | | 0.1489 | 0.2873 | 0.9170 | 0.9151 | 0.9154 | 0.9151 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.17.1 - Tokenizers 0.15.2