from typing import List, Optional, Tuple, Union import torch from transformers import LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm, LlamaRotaryEmbedding, LlamaConfig, LlamaMLP, LlamaAttention, LlamaFlashAttention2, LlamaSdpaAttention from transformers.utils import logging from torch import nn from torch.nn import CrossEntropyLoss import torch.nn.functional as F from transformers.modeling_outputs import BaseModelOutputWithPast, MaskedLMOutput, CausalLMOutputWithPast, TokenClassifierOutput from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.cache_utils import Cache, DynamicCache, StaticCache logger = logging.get_logger(__name__) class ModifiedLlamaAttention(LlamaAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_causal = False class ModifiedLlamaFlashAttention2(LlamaFlashAttention2): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_causal = False class ModifiedLlamaSdpaAttention(LlamaSdpaAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_causal = False LLAMA_ATTENTION_CLASSES = { "eager": ModifiedLlamaAttention, "flash_attention_2": ModifiedLlamaFlashAttention2, "sdpa": ModifiedLlamaSdpaAttention, } class ModifiedLlamaDecoderLayer(LlamaDecoderLayer): def __init__(self, config: LlamaConfig, layer_idx: int): nn.Module.__init__(self) self.hidden_size = config.hidden_size self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = LlamaMLP(config) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) class LlamaEncoderModel(LlamaModel): def __init__(self, config): LlamaPreTrainedModel.__init__(self, config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [ModifiedLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward # if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: # if AttentionMaskConverter._ignore_causal_mask_sdpa( # attention_mask, # inputs_embeds=input_tensor, # past_key_values_length=past_seen_tokens, # is_training=self.training, # ): # return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_length() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) if attention_mask is not None and attention_mask.dim() == 4: # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing if attention_mask.max() != 0: raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") causal_mask = attention_mask else: causal_mask = torch.zeros( (sequence_length, target_length), dtype=dtype, device=device ) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask