---
license: mit
base_model: microsoft/phi-2
tags:
- axolotl
- generated_from_trainer
- phi
- phi-2
- logical
- reasoning
- transformers
- peft
- text-generation-inference
model-index:
- name: phi-2-logical-sft
results: []
datasets:
- garage-bAInd/Open-Platypus
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: microsoft/phi-2
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
hub_model_id: MaziyarPanahi/phi-2-logical-sft
hf_use_auth_token: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: garage-bAInd/Open-Platypus
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./phi-2-logical-sft-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch
adam_beta2: 0.95
adam_epsilon: 0.00001
max_grad_norm: 1.0
lr_scheduler: cosine
learning_rate: 0.000003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
resize_token_embeddings_to_32x: true
special_tokens:
pad_token: "<|endoftext|>"
```
# phi-2-logical-sft
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0075
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8319 | 0.0 | 1 | 1.0229 |
| 0.8799 | 0.25 | 71 | 1.0208 |
| 0.8349 | 0.5 | 142 | 1.0119 |
| 0.7798 | 0.76 | 213 | 1.0093 |
| 0.8317 | 1.01 | 284 | 1.0083 |
| 0.777 | 1.24 | 355 | 1.0080 |
| 0.7544 | 1.49 | 426 | 1.0075 |
| 0.7037 | 1.74 | 497 | 1.0075 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0