--- license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer - phi - phi-2 - logical - reasoning - transformers - peft - text-generation-inference model-index: - name: phi-2-logical-sft results: [] datasets: - garage-bAInd/Open-Platypus --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: microsoft/phi-2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: MaziyarPanahi/phi-2-logical-sft hf_use_auth_token: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: garage-bAInd/Open-Platypus type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./phi-2-logical-sft-out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_torch adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.000003 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: True early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ```

# phi-2-logical-sft This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8319 | 0.0 | 1 | 1.0229 | | 0.8799 | 0.25 | 71 | 1.0208 | | 0.8349 | 0.5 | 142 | 1.0119 | | 0.7798 | 0.76 | 213 | 1.0093 | | 0.8317 | 1.01 | 284 | 1.0083 | | 0.777 | 1.24 | 355 | 1.0080 | | 0.7544 | 1.49 | 426 | 1.0075 | | 0.7037 | 1.74 | 497 | 1.0075 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.0