MaziyarPanahi
commited on
Commit
•
bf4f5ea
1
Parent(s):
f5f659b
Create README.md (#2)
Browse files- Create README.md (18d8950da8607ed7822327638962ab8dc8a37b87)
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: other
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- chat
|
8 |
+
- qwen
|
9 |
+
- qwen2
|
10 |
+
- calme
|
11 |
+
- calme2
|
12 |
+
- finetune
|
13 |
+
- chatml
|
14 |
+
base_model: Qwen/Qwen2-72B
|
15 |
+
license_name: tongyi-qianwen
|
16 |
+
license_link: https://huggingface.co/Qwen/Qwen2-72B/blob/main/LICENSE
|
17 |
+
pipeline_tag: text-generation
|
18 |
+
inference: false
|
19 |
+
model_creator: MaziyarPanahi
|
20 |
+
quantized_by: MaziyarPanahi
|
21 |
+
---
|
22 |
+
|
23 |
+
<img src="./calme-2.webp" alt="Qwen2 fine-tune" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
|
24 |
+
|
25 |
+
# MaziyarPanahi/calme-2.3-qwen2-72b
|
26 |
+
|
27 |
+
This model is a fine-tuned version of the powerful `Qwen/Qwen2-72B-Instruct`, pushing the boundaries of natural language understanding and generation even further. My goal was to create a versatile and robust model that excels across a wide range of benchmarks and real-world applications.
|
28 |
+
|
29 |
+
## Use Cases
|
30 |
+
|
31 |
+
This model is suitable for a wide range of applications, including but not limited to:
|
32 |
+
|
33 |
+
- Advanced question-answering systems
|
34 |
+
- Intelligent chatbots and virtual assistants
|
35 |
+
- Content generation and summarization
|
36 |
+
- Code generation and analysis
|
37 |
+
- Complex problem-solving and decision support
|
38 |
+
|
39 |
+
# ⚡ Quantized GGUF
|
40 |
+
|
41 |
+
All GGUF models are available here: [MaziyarPanahi/calme-2.3-qwen2-72b-GGUF](https://huggingface.co/MaziyarPanahi/calme-2.3-qwen2-72b-GGUF)
|
42 |
+
|
43 |
+
# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
44 |
+
|
45 |
+
|
46 |
+
Leaderboard 2: coming soon!
|
47 |
+
|
48 |
+
|
49 |
+
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|
50 |
+
|--------------|------:|------|-----:|------|-----:|---|-----:|
|
51 |
+
|truthfulqa_mc2| 2|none | 0|acc |0.6761|± |0.0148|
|
52 |
+
|
53 |
+
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|
54 |
+
|----------|------:|------|-----:|------|-----:|---|-----:|
|
55 |
+
|winogrande| 1|none | 5|acc |0.8248|± |0.0107|
|
56 |
+
|
57 |
+
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
58 |
+
|-------------|------:|------|-----:|--------|-----:|---|-----:|
|
59 |
+
|arc_challenge| 1|none | 25|acc |0.6852|± |0.0136|
|
60 |
+
| | |none | 25|acc_norm|0.7184|± |0.0131|
|
61 |
+
|
62 |
+
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|
63 |
+
|-----|------:|----------------|-----:|-----------|-----:|---|-----:|
|
64 |
+
|gsm8k| 3|strict-match | 5|exact_match|0.8582|± |0.0096|
|
65 |
+
| | |flexible-extract| 5|exact_match|0.8893|± |0.0086|
|
66 |
+
|
67 |
+
# Prompt Template
|
68 |
+
|
69 |
+
This model uses `ChatML` prompt template:
|
70 |
+
|
71 |
+
```
|
72 |
+
<|im_start|>system
|
73 |
+
{System}
|
74 |
+
<|im_end|>
|
75 |
+
<|im_start|>user
|
76 |
+
{User}
|
77 |
+
<|im_end|>
|
78 |
+
<|im_start|>assistant
|
79 |
+
{Assistant}
|
80 |
+
````
|
81 |
+
|
82 |
+
# How to use
|
83 |
+
|
84 |
+
|
85 |
+
```python
|
86 |
+
|
87 |
+
# Use a pipeline as a high-level helper
|
88 |
+
|
89 |
+
from transformers import pipeline
|
90 |
+
|
91 |
+
messages = [
|
92 |
+
{"role": "user", "content": "Who are you?"},
|
93 |
+
]
|
94 |
+
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-2.3-qwen2-72b")
|
95 |
+
pipe(messages)
|
96 |
+
|
97 |
+
|
98 |
+
# Load model directly
|
99 |
+
|
100 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
101 |
+
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-2.3-qwen2-72b")
|
103 |
+
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-2.3-qwen2-72b")
|
104 |
+
```
|
105 |
+
|
106 |
+
# Ethical Considerations
|
107 |
+
|
108 |
+
As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.
|
109 |
+
|