--- license: apache-2.0 tags: - generated_from_trainer datasets: - cifar100 metrics: - accuracy model-index: - name: swin-tiny-finetuned-cifar100 results: - task: name: Image Classification type: image-classification dataset: name: cifar100 type: cifar100 args: cifar100 metrics: - name: Accuracy type: accuracy value: 0.8735 --- # swin-tiny-finetuned-cifar100 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the cifar100 dataset. It achieves the following results on the evaluation set: - Accuracy: 0.8735 - Loss: 0.4223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.6439 | 1.0 | 781 | 0.8138 | 0.6126 | | 0.6222 | 2.0 | 1562 | 0.8393 | 0.5094 | | 0.2912 | 3.0 | 2343 | 0.861 | 0.4452 | | 0.2234 | 4.0 | 3124 | 0.8679 | 0.4330 | | 0.121 | 5.0 | 3905 | 0.8735 | 0.4223 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1