{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b13bf23b4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692604252923966268, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoKGr6lGIk+oQSWPnWXZ76f3B89U+NTPQAAAAAAAAAAZgb+O/aYarr+TTw6r2a+Nein+jp1pVi5AACAPwAAgD8mj/E9jQLkPs2Ubj21x7m+7JC6PY/2lT0AAAAAAAAAAGBOHT7Xk2O7MuJnu6XrjjhO+sG8NnJ/OgAAgD8AAIA/M644PXs6n7pw3t265xUftkt82rrOY/85AACAPwAAgD/6FFA+SI2YPnwflL6JRHO+gLutvWIKzb0AAAAAAAAAAL6Ulr5LOpY/BdHnvj77BL+lwta+4KlcvQAAAAAAAAAApha8PeFSmLreNo65phOjs66c5LoaqqI4AACAPwAAgD+b8oS+FmE5P9behT2u2uG+bH9ovgVTbD4AAAAAAAAAAGYaljx7ooW6of2bNX2vvzAkj4A6QGyttAAAgD8AAIA/DR7rPQoHK7kwWW86DsdjNpKqFbz+aZW5AACAPwAAgD96SxU+0mrUu+a2O7W/JKQyq7kgvaoMbDQAAIA/AACAP2ZM473lXtU+2pUIPoK8q770aas6CSoQPQAAAAAAAAAAkHlOvq5U3bzAbH+7Vu8NupplRj4Fb9o6AACAPwAAgD+NZdE9SHesusz8FzbrfPQwMLMouSYaP7UAAIA/AACAP81TZr2PZnO6yQCcu7szFTiQqUM7LkkrNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJYMVk+X7eMAWyUTegDjAF0lEdAkQXBikO7QXV9lChoBkdAcVt/oJRfnmgHTdkCaAhHQJEKVSWJJoV1fZQoaAZHQGVRPcJtzjpoB03oA2gIR0CRCsx0MgEEdX2UKGgGR0BkLxR2r4nGaAdN6ANoCEdAkQuwEZBLPHV9lChoBkdAYszymQ8wH2gHTegDaAhHQJEMwpazNUx1fZQoaAZHQHHuC4FzMidoB01UAmgIR0CRH7IwudwvdX2UKGgGR0ByMC3/giu/aAdL8GgIR0CRIU0/4ZdfdX2UKGgGR0BhHlbs4T9LaAdN6ANoCEdAkSL/ZqVQh3V9lChoBkdAYEcLMs6JZWgHTegDaAhHQJEje29cry11fZQoaAZHQHKuOsHSncdoB01rAmgIR0CRI+850bLmdX2UKGgGR0BkIAx+KCQLaAdN6ANoCEdAkSYcchkiEHV9lChoBkdAY/5RUm2LHmgHTegDaAhHQJEmX5aePJd1fZQoaAZHQG/kdKNAC4loB02LAWgIR0CRKs5yU9pzdX2UKGgGR0Bt/xPykKu0aAdNPQNoCEdAkSvzCHh0hnV9lChoBkdAaQaRdyDIzWgHTegDaAhHQJEwvSMLncN1fZQoaAZHQHDXSq6vq1RoB01HAWgIR0CRMpY+jdpJdX2UKGgGR0Bxxl1/2Cd0aAdNVQFoCEdAkTQzHjp9qnV9lChoBkdAY4f10T101mgHTegDaAhHQJE1hhuwX691fZQoaAZHQHLhQwTM7ltoB01IAmgIR0CRNhVVxS5zdX2UKGgGR0BzU2sPrfLtaAdNwAFoCEdAkTaOCbtqpXV9lChoBkdAYEHPrv9cbGgHTegDaAhHQJE3L/dZaFF1fZQoaAZHQHEpY4ZMtbtoB00pAmgIR0CROhSwGGEgdX2UKGgGR0Bwnu/0ulGgaAdNiAFoCEdAkTp/WxyGSXV9lChoBkdAZ+3Mcp9ZzWgHTegDaAhHQJE99jtoi9t1fZQoaAZHQHMD5tvXK8toB03uAWgIR0CRR55ULlV+dX2UKGgGR0Bypw25xzaLaAdNLwFoCEdAkUqEiMYMv3V9lChoBkdAcQk7CBPKuGgHTecBaAhHQJFL32bobGZ1fZQoaAZHQHIgAhOgxrVoB02/A2gIR0CRTPawD/2kdX2UKGgGR0Bgvln27FsIaAdN6ANoCEdAkU3EYbbUPXV9lChoBkdAcSdnzQNTcmgHTSkCaAhHQJFQiwaBI4F1fZQoaAZHQHLPj1PFefJoB01iA2gIR0CRZBkRjBl+dX2UKGgGR0ByQA4MnZ00aAdNxQNoCEdAkWR3s1KoRHV9lChoBkdAbtipZwGW2WgHTQMDaAhHQJFkszguRLd1fZQoaAZHQGzgPWhAWzpoB00jAWgIR0CRZkF+d9UkdX2UKGgGR0Bwz9dIGyHEaAdNgQJoCEdAkWe3NHH3lHV9lChoBkdAckdyi22G7GgHTWUCaAhHQJFpb5hz/6x1fZQoaAZHQHI9p0Syt3hoB0vmaAhHQJFv9MlC1JF1fZQoaAZHQHCXR3Roh6loB00YAWgIR0CRcu3cpLEldX2UKGgGR0BuztugpSaWaAdN5AJoCEdAkXVtrXUYsXV9lChoBkdAcRGDMeOn22gHTY4DaAhHQJF2kphF3IN1fZQoaAZHQHCCMvIwM6RoB01ZAWgIR0CRdt2x6fJ4dX2UKGgGR0BwHDdl/YrbaAdNFgFoCEdAkXgz+ee4C3V9lChoBkdAXy9XcQAdXGgHTegDaAhHQJF6peAuqWF1fZQoaAZHQGW1f2kBS1poB03oA2gIR0CRfInOSntOdX2UKGgGR0BhsjJ8v24/aAdN6ANoCEdAkX214xDb8HV9lChoBkdAcjDZuQ6p52gHTSIBaAhHQJGA+Qq7ROV1fZQoaAZHQHJQi2Yv38JoB0viaAhHQJGDdxn3+Mt1fZQoaAZHQHBxq6vq1PZoB002AWgIR0CRhfIxQBPsdX2UKGgGR0Buke3pfQa8aAdNHAFoCEdAkYe+EqUeMnV9lChoBkdAcQobUgB91GgHTaABaAhHQJGIQQWepXJ1fZQoaAZHQHJd8riEQGxoB004AWgIR0CRijlYU34sdX2UKGgGR0Bs0jJSzgMuaAdNwQNoCEdAkYsxdld1MnV9lChoBkdAb45nYg7o0WgHTV4BaAhHQJGMlYQrc0t1fZQoaAZHQEjWMDOkcjtoB0vjaAhHQJGNB8eCCjF1fZQoaAZHQGD3EW69TP1oB03oA2gIR0CRjdOARTS9dX2UKGgGR0BwpKGRFI/aaAdN0gJoCEdAkY5qrvLHMnV9lChoBkdAZX2IEbHZK2gHTegDaAhHQJGOn6dlNDd1fZQoaAZHQGUPJtrKvFFoB03oA2gIR0CRjzHk92X+dX2UKGgGR0BhegMx46fbaAdN6ANoCEdAkZFh1DBuXXV9lChoBkdARQ5xLkCFK2gHS79oCEdAkZKV54W1t3V9lChoBkdAb2szjWCmM2gHTZQCaAhHQJGTRdjXnQp1fZQoaAZHQHDosTN+so5oB0v/aAhHQJGknPeHi3p1fZQoaAZHQHAJt03fhuRoB00xAWgIR0CRpLKneiztdX2UKGgGR0BxTGnn+yZ8aAdN3QFoCEdAkaS4QjD8+HV9lChoBkdAbwY9vCMxXWgHTYEBaAhHQJGlgLkS26V1fZQoaAZHQGSbF5OafBhoB03oA2gIR0CRpgfL9uP4dX2UKGgGR0ByYr6tT1kEaAdL9GgIR0CRpmLCN0eVdX2UKGgGR0Bwjs4jrzGxaAdNmgFoCEdAkaehbjcVQHV9lChoBkdAblVr8BMi8mgHTQoBaAhHQJGoZGax5cF1fZQoaAZHQHJisWO6unxoB009A2gIR0CRqsNu+AVgdX2UKGgGR0Bw/J1oxpL3aAdNOwFoCEdAkarKGQCCBnV9lChoBkdAcXCMF2V3U2gHTW0BaAhHQJGsE12q1gJ1fZQoaAZHQHIU4P07KaJoB00eAWgIR0CRrMhpxm03dX2UKGgGR0Bv+3bfxc3VaAdNlwFoCEdAka+ztb9qDnV9lChoBkdAc36TbWVeKWgHTR0BaAhHQJGwK7GvOhV1fZQoaAZHQHIAR/y5I6NoB00JAWgIR0CRsWzNUwSKdX2UKGgGR0BvvxP2wmmcaAdNQAFoCEdAkbIZR0lqrXV9lChoBkdAcYxSt/4Ir2gHTS0BaAhHQJGyZ7kXDWN1fZQoaAZHQHFge7HyVfNoB02XAWgIR0CRtA92ovSMdX2UKGgGR0Bx8lq7AckuaAdNFgFoCEdAkbRhp5/smnV9lChoBkdAcXcHKfWc0GgHTQYBaAhHQJG0eK3uuzR1fZQoaAZHQHHx13t8eCFoB027AWgIR0CRt4z2exwAdX2UKGgGR0BwhQfgaWHDaAdNKwFoCEdAkbiD3dsSCnV9lChoBkdAch79+gDifmgHTZ0CaAhHQJG4wZtNzsB1fZQoaAZHQHDYS48U21loB0vsaAhHQJG8bPVurIZ1fZQoaAZHQHC5Ek0Jng5oB01XAWgIR0CRvMyQgcLjdX2UKGgGR0BwNAIAwPAgaAdNYAFoCEdAkb/DV+Zw43V9lChoBkdAcphnBLwnY2gHTbECaAhHQJHA5pL26Cl1fZQoaAZHQHHHzwUg0TFoB00tAWgIR0CRwPHpr1ujdX2UKGgGR0BygwvQF9roaAdNQAFoCEdAkcHZLAYYSHV9lChoBkdAb/lhUBGQS2gHTUUBaAhHQJHCG7wrlNl1fZQoaAZHQHKQWy5Zr59oB0vraAhHQJHCHkwN9Yx1fZQoaAZHQG8OEPtlZoxoB00qAmgIR0CRwsKekHlfdX2UKGgGR0BxcxBrvb48aAdNlwFoCEdAkcMHI2fkFXV9lChoBkdAcm+v60pmVmgHTZoCaAhHQJHHZJjDsMR1fZQoaAZHQHDX0d/8VHpoB01BA2gIR0CRyGhXbM5fdX2UKGgGR0BxPT2WY4Q0aAdNXAFoCEdAkciSBwuM/HV9lChoBkdAcXBxDLKV6mgHTT4CaAhHQJHI4iW3Sa51fZQoaAZHQHD0qaTfR/poB015AWgIR0CRyfaCL/CJdX2UKGgGR0BxK5DKHO8kaAdNJAFoCEdAkcrPSUkfLnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}