Small dummy LLama2-type Model useable for Unit/Integration tests. Suitable for CPU only machines, see [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio/blob/main/tests/integration/test_integration.py) for an example integration test. Model was created as follows: ```python from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM repo_name = "MaxJeblick/llama2-0b-unit-test" model_name = "h2oai/h2ogpt-4096-llama2-7b-chat" config = AutoConfig.from_pretrained(model_name) config.hidden_size = 12 config.max_position_embeddings = 32 config.intermediate_size = 24 config.num_attention_heads = 2 config.num_hidden_layers = 2 config.num_key_value_heads = 2 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_config(config) print(model.num_parameters()) # 770_940 model.push_to_hub(repo_name, private=False) tokenizer.push_to_hub(repo_name, private=False) config.push_to_hub(repo_name, private=False) ``` Use the following configuration in [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to run a complete experiment in **5 seconds** using the default dataset and default settings otherwise: ```yaml Validation Size: 0.1 Data Sample: 0.1 Max Length Prompt: 32 Max Length Answer: 32 Max Length: 64 Backbone Dtype: float16 Gradient Checkpointing: False Batch Size: 8 Max Length Inference: 16 ```