--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: VIT-ASVspoof5-ConstantQ-Synthetic-Voice-Detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7589634206678174 - name: F1 type: f1 value: 0.8126223301053855 - name: Precision type: precision value: 0.828476821192053 - name: Recall type: recall value: 0.7973632566799175 --- # VIT-ASVspoof5-ConstantQ-Synthetic-Voice-Detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.1171 - Accuracy: 0.7590 - F1: 0.8126 - Precision: 0.8285 - Recall: 0.7974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0145 | 1.0 | 22795 | 1.4281 | 0.7289 | 0.8193 | 0.7275 | 0.9377 | | 0.0084 | 2.0 | 45590 | 1.7308 | 0.7343 | 0.7730 | 0.8787 | 0.6899 | | 0.0 | 3.0 | 68385 | 2.1171 | 0.7590 | 0.8126 | 0.8285 | 0.7974 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1