--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: vit-base-patch16-224-in21k results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9996377394944453 - name: F1 type: f1 value: 0.9997981836528759 - name: Precision type: precision value: 0.9997309296381004 - name: Recall type: recall value: 0.9998654467168999 --- # vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0025 - Accuracy: 0.9996 - F1: 0.9998 - Precision: 0.9997 - Recall: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.007 | 1.0 | 3173 | 0.0108 | 0.9972 | 0.9984 | 0.9969 | 1.0 | | 0.0015 | 2.0 | 6346 | 0.0022 | 0.9997 | 0.9998 | 0.9999 | 0.9998 | | 0.0 | 3.0 | 9519 | 0.0025 | 0.9996 | 0.9998 | 0.9997 | 0.9999 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0