--- license: apache-2.0 --- ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: Espresso Pitcher with Handle', 'query: Women’s designer handbag sale', "passage: Dianoo Espresso Steaming Pitcher, Espresso Milk Frothing Pitcher Stainless Steel", "passage: Coach Outlet Eliza Shoulder Bag - Black - One Size"] tokenizer = AutoTokenizer.from_pretrained('Marqo/marqo-gcl-e5-large-v2-130') model_new = AutoModel.from_pretrained('Marqo/marqo-gcl-e5-large-v2-130') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=77, padding=True, truncation=True, return_tensors='pt') outputs = model_new(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ```