{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cb1b20692c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719823808304274855, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaTwjz0EKM/MpCaPF+P0b4e/fc9zlFxuwAAAAAAAAAAAFAyO8NhfLrN6NG6kRagtULUyzo4AfU5AACAPwAAgD+m55S9OsQIP4YRZL2vfpS+tE5aPNbwVjwAAAAAAAAAAKaP+b1fjH4/eCg/vqbNAr/s2qa9srJYvQAAAAAAAAAAs71zvVwjW7prcxy3Ps4qsq9eOju/0zg2AACAPwAAgD/m2XE978bTPvA22b2HDbG+28w6vfUGaL0AAAAAAAAAAGZWp7r3i1A+49OPvuwFmr77QCa+8LIpvQAAAAAAAAAAmh3kvbtPFT/gz2m984nPvpcb/L01ggc9AAAAAAAAAAAAAF44SGWIugtUUreLukGyMfUzuyaOdTYAAIA/AACAP82fsbxE2YM9f7CHPfkYR74JJ4K6pEIDvgAAAAAAAAAA87UBviv6cj/yXA6+zNjsviv1Bb4ShkK9AAAAAAAAAADmhJw9lI0YPxMyQL6as7i+vZQAPdMC3L0AAAAAAAAAAKArcL4EuXM/xYGhvjcmB786W5K+kwv7vQAAAAAAAAAAzawVPIUXzbtEQ4491RskvmWVBjzSk189AACAPwAAgD8zeEw9Qt8rPsZLjL3nNo6+jFgDvW/RFr0AAAAAAAAAAM3ixTxDwzS8Q+jNOyF7oTyZ+ZS97kyEPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIjSb6P8yiMAWyUS+qMAXSUR0CSW2R5kbxWdX2UKGgGR0BONfAsTWXkaAdLxWgIR0CSXBzijtXxdX2UKGgGR0BwmaPXCj1xaAdNCgFoCEdAkly+WfK6nXV9lChoBkdAcP1WmxdIG2gHTScBaAhHQJJcxIvrWy11fZQoaAZHQHK5t5t3wCtoB00IAWgIR0CSXO6aLGaQdX2UKGgGR0BxD3ZIxxkvaAdNJQFoCEdAkl2BOLzf8HV9lChoBkdAcViE9+w1SGgHTSoBaAhHQJJd0NlRP451fZQoaAZHQHH2ZUPxx1hoB00TAWgIR0CSXm1SwW30dX2UKGgGR0Bu4eERJ2+xaAdL5WgIR0CSX1gElme2dX2UKGgGR0BxYoZbY9PlaAdNIwFoCEdAkmBAJLM9sHV9lChoBkdAcv01RLsa9GgHS/BoCEdAkmEgQtjCpHV9lChoBkdAbVX9JBgNPWgHTQIBaAhHQJJhyvECNjt1fZQoaAZHQHGMEuUUwi9oB00SAWgIR0CSYpVM23rldX2UKGgGR0BuuOOwPiDNaAdL+mgIR0CSYqWkJrtWdX2UKGgGR0Bw88ybhFVlaAdNJwFoCEdAkmMTz/ZM+XV9lChoBkdAcrW70nPVu2gHS95oCEdAkmN5PIn0CnV9lChoBkdAcBiUFB6a9mgHTRABaAhHQJJkJznzQNV1fZQoaAZHQHGGYnWrfchoB00FAWgIR0CSZHhqCYkWdX2UKGgGR0BxK0InjQzDaAdL7GgIR0CSZOzMA3kxdX2UKGgGR0BuEdugpSaWaAdNFwFoCEdAkmUCUornT3V9lChoBkdAb68sCDEm6WgHTR4BaAhHQJJmEoc7yQR1fZQoaAZHQG46K1og3cZoB0v7aAhHQJJmD63y7PJ1fZQoaAZHQGQKK1PWQOpoB03oA2gIR0CSZqrgflp5dX2UKGgGR0BwXeqT8pCsaAdNNgFoCEdAkmixhttQ9HV9lChoBkdAb0a1n/T9bWgHTRcBaAhHQJJormQr+YN1fZQoaAZHQGyYduxbB45oB00LAWgIR0CSabQ0XP7fdX2UKGgGR0BwU5byH2ytaAdL8GgIR0CSabIxgy/LdX2UKGgGR0BzUrOiWVu8aAdL+mgIR0CSae1MdtEYdX2UKGgGR0Bx8yrLhaTwaAdNSQFoCEdAkmrUcGTs6nV9lChoBkdAcLnkKu0TlGgHTQUBaAhHQJJq/4oJAt51fZQoaAZHQHNGOnEVFhJoB02AAmgIR0CSawu2JBPbdX2UKGgGR0BzbZcD8tPIaAdNFQFoCEdAkmsbLyMDOnV9lChoBkdAcq51He7+UGgHS/JoCEdAkmvFejVQRHV9lChoBkdAc38P9DQZ42gHTQ4BaAhHQJJsDBSDRMN1fZQoaAZHQHBXuws5GSZoB00KAWgIR0CSbWW8h9srdX2UKGgGR0BzA5abF0gbaAdL/mgIR0CSbbaRp1zRdX2UKGgGR0BxNE+6iCaraAdNQAFoCEdAkm3gIY3vQXV9lChoBkdAcfxAAQxvemgHTT8BaAhHQJJu2PaL4vh1fZQoaAZHQHIKLN0NjLBoB0vuaAhHQJJwNYT0xud1fZQoaAZHQHDahArxy4poB0v7aAhHQJKE1D0Dlo11fZQoaAZHQG/Lg+yJKrdoB00pAWgIR0CShSxFRYRvdX2UKGgGR0BvwlQTEit8aAdNEwFoCEdAkoXW2b5M13V9lChoBkdAcdgkq+ajOGgHS+xoCEdAkoXkqpcX33V9lChoBkdAboYaDwpe/2gHS/VoCEdAkoXt2C/XXnV9lChoBkdAcKjKUFB6bGgHTVABaAhHQJKGT6Eal1t1fZQoaAZHQHAF3n+yZ8doB00eAWgIR0CShz+QlruZdX2UKGgGR0Bxp0RWcSXdaAdNHwFoCEdAkohm9Htnf3V9lChoBkdAc1Quc+aBqmgHTS0BaAhHQJKIgB/7SAp1fZQoaAZHQHAvAVO9FnZoB0vkaAhHQJKIj7el9Bt1fZQoaAZHQHCgQlruYyBoB0v4aAhHQJKI8AvL5h11fZQoaAZHQHCCDJ+2E01oB0vbaAhHQJKJTf3vhIh1fZQoaAZHQHGjD9jwx35oB01HAWgIR0CSitp/gBLgdX2UKGgGR0BQj1f/m1YyaAdLpmgIR0CSiul5GBnSdX2UKGgGR0BuzVapxWDIaAdL3mgIR0CSixgA6uGLdX2UKGgGR0BwwkMx46fbaAdL6mgIR0CSi7+h4+r3dX2UKGgGR0BwVZJmNBGAaAdNBAFoCEdAkovJH/cWTHV9lChoBkdAcU3teUpuuWgHS/RoCEdAkoym5hBqsXV9lChoBkdAcW9UFB6a9mgHTfcBaAhHQJKNMfRu0kZ1fZQoaAZHQHJMDE74i5doB00QAWgIR0CSjVOlwcYJdX2UKGgGR0By8ENPP9k0aAdL3mgIR0CSjWzUZvUCdX2UKGgGR0BuUCW5Yoy9aAdNMQFoCEdAko5H71qWT3V9lChoBkdAbrG5MDfWMGgHS+hoCEdAko7X0XgtOHV9lChoBkdAcNkL39JjD2gHS/VoCEdAko8YoiLVF3V9lChoBkdAbw+cI7eVLWgHS/9oCEdAko/6BI4EOnV9lChoBkdAcK4LRKHwgGgHTR8BaAhHQJKQdh7Vrh11fZQoaAZHQG/yNsWO6upoB00HAWgIR0CSkJoTPBzndX2UKGgGR0ByaaARTS9eaAdNAAFoCEdAkpHuCoS+QHV9lChoBkdAcALBYFJQL2gHS/FoCEdAkpJzZ13dK3V9lChoBkdAcZYvZyuIRGgHS/loCEdAkpK8SPEKmnV9lChoBkdAbs0QbMottmgHTSoBaAhHQJKTQr8R+Sd1fZQoaAZHQHI5T94u9OBoB00rAWgIR0CSk3qt5le4dX2UKGgGR0BwuUfZElVtaAdL8mgIR0CSk3r8zhxYdX2UKGgGR0BM/yfthNM5aAdN6ANoCEdAkpRz/uLJjnV9lChoBkdAcT09m6GxlmgHTQ8BaAhHQJKVBvwVj7R1fZQoaAZHQHHCRBRhttRoB00tAWgIR0CSlZxesxO+dX2UKGgGR0BwUJpTMqz7aAdL+mgIR0CSleHXEqDsdX2UKGgGR0Bv4MhgVoHtaAdNDwFoCEdAkpXgE+xGD3V9lChoBkdAcx3ziS7oS2gHS+VoCEdAkpZfYvnKXHV9lChoBkdARibjWCmMwWgHS91oCEdAkpadqQA+6nV9lChoBkdAcgUgAZKnN2gHTXEBaAhHQJKXhP1tfol1fZQoaAZHQHAaeEVWS2ZoB00KAWgIR0CSl+uq3mV8dX2UKGgGR0BuTTxusLfDaAdNQwFoCEdAkpgJztCzC3V9lChoBkdAcHK/fwZwXWgHS/poCEdAkpiuxGDtgXV9lChoBkdAbt906HTJAGgHS/RoCEdAkpjxl6JIlXV9lChoBkdAcp79LHuJDWgHTQgBaAhHQJKZqXdCVr11fZQoaAZHQHIAfxYq5LBoB0vwaAhHQJKZsvzvqkd1fZQoaAZHQHASmMCLdepoB00QAWgIR0CSmpHdGiHqdX2UKGgGR0BxjS/sVtXQaAdNKAFoCEdAkpsA3DNyHXV9lChoBkdAcgsON5t3wGgHTQABaAhHQJKbGMOwxFl1fZQoaAZHQHJz792ovSNoB0v9aAhHQJKbilMyrPt1fZQoaAZHQHCD3JtBOYZoB0v0aAhHQJKb1fnfVI91fZQoaAZHQG5rm3nZCfJoB00CAWgIR0CSnGrHlwLmdX2UKGgGR0BvobilzltCaAdNGAFoCEdAkpz8hxHXmXV9lChoBkdAcuGzasZHeGgHS+loCEdAkp3Bk3CKrXV9lChoBkdAck2a/ATIvWgHS/hoCEdAkp3AXl8w6HV9lChoBkdAcwv7sOXmeWgHTSgBaAhHQJKd2WIGhVV1fZQoaAZHQHHEeZb6guhoB0vsaAhHQJKe6L2pQ1t1fZQoaAZHQG30WFN+LFZoB00SAWgIR0CSnuxs2vSudX2UKGgGR0BuLiVrylN2aAdL+GgIR0CSnvIyTINmdX2UKGgGR0ByO/hBJI1+aAdNTAFoCEdAkp8B3zMA3nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Tue Jun 18 14:18:04 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}