--- license: mit library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Chinkara 7B (Improved) _Chinkara_ is a Large Language Model trained on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) dataset based on Meta's brand new LLaMa-2 with 7 billion parameters using QLoRa Technique, optimized for small consumer size GPUs. ![logo](chinkara-logo.png) ## Information For more information about the model please visit [prp-e/chinkara](https://github.com/prp-e/chinkara) on Github. ## Inference Guide [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prp-e/chinkara/blob/main/inference-7b-improved.ipynb) _NOTE: This part is for the time you want to load and infere the model on your local machine. You still need 8GB of VRAM on your GPU. The recommended GPU is at least a 2080!_ ### Installing libraries ``` pip install -U bitsandbytes pip install -U git+https://github.com/huggingface/transformers.git pip install -U git+https://github.com/huggingface/peft.git pip install -U git+https://github.com/huggingface/accelerate.git pip install -U datasets pip install -U einops ``` ### Loading the model ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "Trelis/Llama-2-7b-chat-hf-sharded-bf16" adapters_name = 'MaralGPT/chinkara-7b-improved' model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True, torch_dtype=torch.bfloat16, device_map="auto", max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())}, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ), ) model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### Setting the model up ```python from peft import LoraConfig, get_peft_model model = PeftModel.from_pretrained(model, adapters_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ### Prompt and inference ```python prompt = "What is the answer to life, universe and everything?" prompt = f"###Human: {prompt} ###Assistant:" inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0") outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=50, temperature=0.5, repetition_penalty=1.0) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) print(answer) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0