--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-movie-roberta-finetuned-sentiment-model-9000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9077777777777778 - name: F1 type: f1 value: 0.906636670416198 --- # finetuning-movie-roberta-finetuned-sentiment-model-9000-samples This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.5019 - Accuracy: 0.9078 - F1: 0.9066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2