import gradio as gr
import json
import math
from pathlib import Path
from typing import Optional
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel,DiffusionPipeline, DPMSolverMultistepScheduler,EulerDiscreteScheduler
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from torchvision import transforms
from tqdm.auto import tqdm
from typing import Dict, List, Generator, Tuple
from PIL import Image, ImageFile
from collections.abc import Iterable
from trainer_util import *
from dataloaders_util import *
# FlashAttention based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main
# /memory_efficient_attention_pytorch/flash_attention.py LICENSE MIT
# https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE constants
EPSILON = 1e-6
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
# helper functions
def print_instructions():
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+G' to open up a GUI to play around with the model (will pause training){bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+S' to save a checkpoint of the current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+P' to generate samples for current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+Q' to save and quit after the current epoch{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+S' to save a checkpoint of the current step{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+P' to generate samples for current step{bcolors.ENDC}")
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+SHIFT+ALT+Q' to save and quit after the current step{bcolors.ENDC}")
tqdm.write('')
tqdm.write(f"{bcolors.WARNING}Use 'CTRL+H' to print this message again.{bcolors.ENDC}")
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
#function to format a dictionary into a telegram message
def format_dict(d):
message = ""
for key, value in d.items():
#filter keys that have the word "token" in them
if "token" in key and "tokenizer" not in key:
value = "TOKEN"
if 'id' in key:
value = "ID"
#if value is a dictionary, format it recursively
if isinstance(value, dict):
for k, v in value.items():
message += f"\n- {k}: {v} \n"
elif isinstance(value, list):
#each value is a new line in the message
message += f"- {key}:\n\n"
for v in value:
message += f" {v}\n\n"
#if value is a list, format it as a list
else:
message += f"- {key}: {value}\n"
return message
def send_telegram_message(message, chat_id, token):
url = f"https://api.telegram.org/bot{token}/sendMessage?chat_id={chat_id}&text={message}&parse_mode=html&disable_notification=True"
import requests
req = requests.get(url)
if req.status_code != 200:
raise ValueError(f"Telegram request failed with status code {req.status_code}")
def send_media_group(chat_id,telegram_token, images, caption=None, reply_to_message_id=None):
"""
Use this method to send an album of photos. On success, an array of Messages that were sent is returned.
:param chat_id: chat id
:param images: list of PIL images to send
:param caption: caption of image
:param reply_to_message_id: If the message is a reply, ID of the original message
:return: response with the sent message
"""
SEND_MEDIA_GROUP = f'https://api.telegram.org/bot{telegram_token}/sendMediaGroup'
from io import BytesIO
import requests
files = {}
media = []
for i, img in enumerate(images):
with BytesIO() as output:
img.save(output, format='PNG')
output.seek(0)
name = f'photo{i}'
files[name] = output.read()
# a list of InputMediaPhoto. attach refers to the name of the file in the files dict
media.append(dict(type='photo', media=f'attach://{name}'))
media[0]['caption'] = caption
media[0]['parse_mode'] = 'HTML'
return requests.post(SEND_MEDIA_GROUP, data={'chat_id': chat_id, 'media': json.dumps(media),'disable_notification':True, 'reply_to_message_id': reply_to_message_id }, files=files)
class AverageMeter:
def __init__(self, name=None, max_eta=None):
self.name = name
self.max_eta = max_eta
self.reset()
def reset(self):
self.count = self.avg = 0
@torch.no_grad()
def update(self, val, n=1):
eta = self.count / (self.count + n)
if self.max_eta:
eta = min(eta, self.max_eta ** n)
self.avg += (1 - eta) * (val - self.avg)
self.count += n
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def masked_mse_loss(predicted, target, mask, reduction="none"):
masked_predicted = predicted * mask
masked_target = target * mask
return F.mse_loss(masked_predicted, masked_target, reduction=reduction)
# flash attention forwards and backwards
# https://arxiv.org/abs/2205.14135
class FlashAttentionFunction(torch.autograd.function.Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
""" Algorithm 2 in the paper """
device = q.device
dtype = q.dtype
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros(
(*q.shape[:-1], 1), dtype=dtype, device=device)
all_row_maxes = torch.full(
(*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)
scale = (q.shape[-1] ** -0.5)
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, 'b n -> b 1 1 n')
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum(
'... i d, ... j d -> ... i j', qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.)
block_row_sums = exp_weights.sum(
dim=-1, keepdims=True).clamp(min=EPSILON)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum(
'... i j, ... j d -> ... i d', exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(
block_row_maxes - new_row_maxes)
new_row_sums = exp_row_max_diff * row_sums + \
exp_block_row_max_diff * block_row_sums
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
(exp_block_row_max_diff / new_row_sums) * exp_values)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
""" Algorithm 4 in the paper """
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, l, m = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
l.split(q_bucket_size, dim=-2),
m.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2)
)
for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum(
'... i d, ... j d -> ... i j', qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool,
device=device).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
exp_attn_weights = torch.exp(attn_weights - mc)
if exists(row_mask):
exp_attn_weights.masked_fill_(~row_mask, 0.)
p = exp_attn_weights / lc
dv_chunk = einsum('... i j, ... i d -> ... j d', p, doc)
dp = einsum('... i d, ... j d -> ... i j', doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum('... i j, ... j d -> ... i d', ds, kc)
dk_chunk = einsum('... i j, ... i d -> ... j d', ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "RobertaSeriesModelWithTransformation":
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
return RobertaSeriesModelWithTransformation
else:
raise ValueError(f"{model_class} is not supported.")
def replace_unet_cross_attn_to_flash_attention():
print("Using FlashAttention")
def forward_flash_attn(self, x, context=None, mask=None):
q_bucket_size = 512
k_bucket_size = 1024
h = self.heads
q = self.to_q(x)
context = context if context is not None else x
context = context.to(x.dtype)
if hasattr(self, 'hypernetwork') and self.hypernetwork is not None:
context_k, context_v = self.hypernetwork.forward(x, context)
context_k = context_k.to(x.dtype)
context_v = context_v.to(x.dtype)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(
t, 'b n (h d) -> b h n d', h=h), (q, k, v))
out = FlashAttentionFunction.apply(q, k, v, mask, False,
q_bucket_size, k_bucket_size)
out = rearrange(out, 'b h n d -> b n (h d)')
# diffusers 0.6.0
if type(self.to_out) is torch.nn.Sequential:
return self.to_out(out)
# diffusers 0.7.0
out = self.to_out[0](out)
out = self.to_out[1](out)
return out
diffusers.models.attention.CrossAttention.forward = forward_flash_attn
class Depth2Img:
def __init__(self,unet,text_encoder,revision,pretrained_model_name_or_path,accelerator):
self.unet = unet
self.text_encoder = text_encoder
self.revision = revision if revision != 'no' else 'fp32'
self.pretrained_model_name_or_path = pretrained_model_name_or_path
self.accelerator = accelerator
self.pipeline = None
def depth_images(self,paths):
if self.pipeline is None:
self.pipeline = DiffusionPipeline.from_pretrained(
self.pretrained_model_name_or_path,
unet=self.accelerator.unwrap_model(self.unet),
text_encoder=self.accelerator.unwrap_model(self.text_encoder),
revision=self.revision,
local_files_only=True,)
self.pipeline.to(self.accelerator.device)
self.vae_scale_factor = 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
non_depth_image_files = []
image_paths_by_path = {}
for path in paths:
#if path is list
if isinstance(path, list):
img = Path(path[0])
else:
img = Path(path)
if self.get_depth_image_path(img).exists():
continue
else:
non_depth_image_files.append(img)
image_objects = []
for image_path in non_depth_image_files:
image_instance = Image.open(image_path)
if not image_instance.mode == "RGB":
image_instance = image_instance.convert("RGB")
image_instance = self.pipeline.feature_extractor(
image_instance, return_tensors="pt"
).pixel_values
image_instance = image_instance.to(self.accelerator.device)
image_objects.append((image_path, image_instance))
for image_path, image_instance in image_objects:
path = image_path.parent
ogImg = Image.open(image_path)
ogImg_x = ogImg.size[0]
ogImg_y = ogImg.size[1]
depth_map = self.pipeline.depth_estimator(image_instance).predicted_depth
depth_min = torch.amin(depth_map, dim=[0, 1, 2], keepdim=True)
depth_max = torch.amax(depth_map, dim=[0, 1, 2], keepdim=True)
depth_map = torch.nn.functional.interpolate(depth_map.unsqueeze(1),size=(ogImg_y, ogImg_x),mode="bicubic",align_corners=False,)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map[0,:,:]
depth_map_image = transforms.ToPILImage()(depth_map)
depth_map_image = depth_map_image.filter(ImageFilter.GaussianBlur(radius=1))
depth_map_image.save(self.get_depth_image_path(image_path))
#quit()
return 2 ** (len(self.pipeline.vae.config.block_out_channels) - 1)
def get_depth_image_path(self,image_path):
#if image_path is a string, convert it to a Path object
if isinstance(image_path, str):
image_path = Path(image_path)
return image_path.parent / f"{image_path.stem}-depth.png"
def fix_nans_(param, name=None, stats=None):
(std, mean) = stats or (1, 0)
tqdm.write(name, param.shape, param.dtype, mean, std)
param.data = torch.where(param.data.isnan(), torch.randn_like(param.data) * std + mean, param.data).detach()