--- language: - ru license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small new-ru- AIIA results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17 type: mozilla-foundation/common_voice_17_0 config: ru split: test args: ru metrics: - name: Wer type: wer value: 15.95373835589288 --- # Whisper Small new-ru- AIIA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2322 - Wer Ortho: 20.5050 - Wer: 15.9537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 70 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.3214 | 0.4371 | 500 | 0.2550 | 21.4272 | 16.9669 | | 0.2033 | 0.8741 | 1000 | 0.2322 | 20.5050 | 15.9537 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cpu - Datasets 2.20.0 - Tokenizers 0.19.1