File size: 2,071 Bytes
685f4c2 06d1b70 685f4c2 06d1b70 685f4c2 06d1b70 685f4c2 06d1b70 685f4c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: ./7326
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ./7326
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the 7326 FULL-2024-10-24 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3906
- Wer Ortho: 22.5859
- Wer: 15.5145
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 1400
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
| 0.6841 | 0.4851 | 200 | 0.4590 | 25.7036 | 18.3842 |
| 0.5245 | 0.9703 | 400 | 0.4204 | 24.1509 | 16.9945 |
| 0.4305 | 1.4554 | 600 | 0.4028 | 23.1144 | 15.9502 |
| 0.4039 | 1.9406 | 800 | 0.3940 | 23.1431 | 16.0444 |
| 0.3567 | 2.4257 | 1000 | 0.3943 | 22.6269 | 15.6754 |
| 0.3391 | 2.9109 | 1200 | 0.3904 | 22.5900 | 15.5459 |
| 0.317 | 3.3960 | 1400 | 0.3906 | 22.5859 | 15.5145 |
### Framework versions
- Transformers 4.45.1
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0
|