--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-cit-synth-do0.15-wd0-lr1e-06-1000 results: [] --- # whisper-large-cit-synth-do0.15-wd0-lr1e-06-1000 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3877 - Wer: 24.9123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.0947 | 0.3556 | 20 | 0.8311 | 36.7251 | | 0.8896 | 0.7111 | 40 | 0.7202 | 34.7368 | | 0.8418 | 1.0667 | 60 | 0.6216 | 32.0078 | | 0.6567 | 1.4222 | 80 | 0.5254 | 30.7212 | | 0.5491 | 1.7778 | 100 | 0.4690 | 27.6803 | | 0.5497 | 2.1333 | 120 | 0.4368 | 26.6667 | | 0.4875 | 2.4889 | 140 | 0.4211 | 25.7310 | | 0.4721 | 2.8444 | 160 | 0.4124 | 25.3801 | | 0.46 | 3.2 | 180 | 0.4026 | 25.3801 | | 0.4342 | 3.5556 | 200 | 0.3960 | 24.9513 | | 0.4248 | 3.9111 | 220 | 0.3945 | 24.8733 | | 0.4249 | 4.2667 | 240 | 0.3916 | 24.9123 | | 0.4192 | 4.6222 | 260 | 0.3899 | 24.7953 | | 0.3823 | 4.9778 | 280 | 0.3884 | 24.6004 | | 0.4176 | 5.3333 | 300 | 0.3877 | 24.9123 | ### Framework versions - Transformers 4.42.3 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1