--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # transformers_issues_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("Maitorokku/transformers_issues_topics") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 30 * Number of training documents: 9000
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | climate - environmental - research - analysis - study | 11 | -1_climate_environmental_research_analysis | | 0 | climate - climatic - ecological - environmental - precipitation | 2717 | 0_climate_climatic_ecological_environmental | | 1 | resilience - practices - innovation - preparedness - management | 2162 | 1_resilience_practices_innovation_preparedness | | 2 | ndvi - correlation - vegetation - pearson - formula | 642 | 2_ndvi_correlation_vegetation_pearson | | 3 | study - questionnaire - criteria - respondents - conducted | 427 | 3_study_questionnaire_criteria_respondents | | 4 | software - sustainable - research - researchers - development | 394 | 4_software_sustainable_research_researchers | | 5 | malaria - prevalence - population - mosquitoes - mosquito | 309 | 5_malaria_prevalence_population_mosquitoes | | 6 | pandemic - pandemics - covid19 - crisis - governments | 290 | 6_pandemic_pandemics_covid19_crisis | | 7 | journals - journal - article - articles - bibliometric | 252 | 7_journals_journal_article_articles | | 8 | propolis - antimicrobial - aloe - antibacterial - biofilm | 228 | 8_propolis_antimicrobial_aloe_antibacterial | | 9 | health - millennials - healthy - healthcare - changehealth | 216 | 9_health_millennials_healthy_healthcare | | 10 | deficiency - vitamin - diseases - supplementation - dietary | 184 | 10_deficiency_vitamin_diseases_supplementation | | 11 | quails - quail - insulation - temperatures - heatstress | 153 | 11_quails_quail_insulation_temperatures | | 12 | ethics - ethical - researchers - moral - research | 144 | 12_ethics_ethical_researchers_moral | | 13 | obesity - metabolic - diabetes - circadian - health | 140 | 13_obesity_metabolic_diabetes_circadian | | 14 | poultry - chickens - chicken - livestock - farms | 134 | 14_poultry_chickens_chicken_livestock | | 15 | lightning - incidence - fatalities - bangladesh - deaths | 80 | 15_lightning_incidence_fatalities_bangladesh | | 16 | harassment - gaming - behavior - games - narratives | 72 | 16_harassment_gaming_behavior_games | | 17 | indigenous - knowledge - concept - ik - principles | 68 | 17_indigenous_knowledge_concept_ik | | 18 | kinase - gene - signaling - phosphorylates - phosphorylation | 60 | 18_kinase_gene_signaling_phosphorylates | | 19 | camel - camels - meat - meats - beef | 44 | 19_camel_camels_meat_meats | | 20 | turkey - turkeyeu - turkeys - turkish - ankara | 43 | 20_turkey_turkeyeu_turkeys_turkish | | 21 | wasserwiedernutzung - treibhausgaseffekt - wiedernutzung - beschreibt - khleffekt | 41 | 21_wasserwiedernutzung_treibhausgaseffekt_wiedernutzung_beschreibt | | 22 | locusts - genome - locust - sequencing - genes | 41 | 22_locusts_genome_locust_sequencing | | 23 | chainsaw - noisy - noise - nonchainsaw - earmuffs | 37 | 23_chainsaw_noisy_noise_nonchainsaw | | 24 | evolution - evolved - brains - neuroplasticity - brain | 36 | 24_evolution_evolved_brains_neuroplasticity | | 25 | sinusitis - sinus - sinuses - aplasia - paranasal | 31 | 25_sinusitis_sinus_sinuses_aplasia | | 26 | mandarins - mandarin - citrus - fruits - fruit | 16 | 26_mandarins_mandarin_citrus_fruits | | 27 | hikikomori - otaku - japanese - anime - otakus | 16 | 27_hikikomori_otaku_japanese_anime | | 28 | travel - trips - businesses - business - corporate | 12 | 28_travel_trips_businesses_business |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: 30 * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12