--- tags: - autotrain - tabular - regression - tabular-regression datasets: - autotrain-eno5u-hy49n/autotrain-data --- # Model Trained Using AutoTrain - Problem type: Tabular regression ## Validation Metrics - r2: 0.9988073651686958 - mse: 337854.8880689932 - mae: 398.9371570016889 - rmse: 581.2528606974706 - rmsle: 0.01184006241771929 - loss: 581.2528606974706 ## Best Params - learning_rate: 0.09168110099890295 - reg_lambda: 0.11592417839619104 - reg_alpha: 0.0010410090431649107 - subsample: 0.357364833100802 - colsample_bytree: 0.9155936367985213 - max_depth: 7 - early_stopping_rounds: 158 - n_estimators: 15000 - eval_metric: rmse ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] predictions = model.predict(data) # or model.predict_proba(data) # predictions can be converted to original labels using label_encoders.pkl ```