--- license: gemma library_name: peft tags: - generated_from_trainer base_model: google/paligemma-3b-pt-224 model-index: - name: paligemma_VQAMed results: [] --- # paligemma_VQAMed This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the [VQAMed 2019](https://zenodo.org/records/10499039) dataset. ## How to use To use the model, follow the [colab notebook](https://colab.research.google.com/drive/1SfrNNHE32k9kBWdR6U0DQr4LI_AVIAb1?usp=sharing). Below is a quick example. To ensure you have the latest version of Transformers, install it using the following command: ```bash !pip install -qU git+https://github.com/huggingface/transformers.git ``` ```python from transformers import AutoProcessor, PaliGemmaForConditionalGeneration import torch from PIL import Image import requests processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-224") model = PaliGemmaForConditionalGeneration.from_pretrained("MahmoudRox/Paligemma_VQAMED2019") prompt = "Which part of the body is in the picture?" #your question image_file = "https://prod-images-static.radiopaedia.org/images/9289883/1c20962e46c92ee83a3f551adb24fa_big_gallery.jpg" #your image raw_image = Image.open(requests.get(image_file, stream=True).raw) def generate_response(prompt, image): inputs = processor(images=image, text=prompt, return_tensors="pt") # Check if the attention mask needs to be inverted attention_mask = inputs['attention_mask'] if torch.max(attention_mask) == 1: attention_mask = 1 - attention_mask # Generate a response outputs = model.generate( input_ids=inputs['input_ids'], attention_mask=attention_mask, pixel_values=inputs['pixel_values'], max_new_tokens=1, no_repeat_ngram_size=2 ) # Decode and print the response decoded_response = processor.decode(outputs[0], skip_special_tokens=True)[len(prompt):] return decoded_response print(generate_response(prompt, raw_image)) #spine ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Framework versions - PEFT 0.11.1 - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1