--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-intent-classifier results: [] --- # bert-intent-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1416 - Accuracy: 0.9649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3131 | 0.9991 | 535 | 0.1634 | 0.9557 | | 0.1143 | 2.0 | 1071 | 0.1378 | 0.9620 | | 0.0754 | 2.9991 | 1606 | 0.1395 | 0.9654 | | 0.0571 | 4.0 | 2142 | 0.1391 | 0.9644 | | 0.0451 | 4.9953 | 2675 | 0.1416 | 0.9649 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1