--- library_name: transformers, peft base_model: meta-llama/Llama-2-7b-hf license: llama2 pipeline_tag: text-generation language: - multilingual datasets: - cis-lmu/Glot500 --- MaLA-500 is a novel large language model designed to cover an extensive range of 534 languages. This model builds upon LLaMA 2 7B and integrates continued pretraining with vocabulary extension, with an expanded vocabulary size of 260,164, and LoRA low-rank adaptation. - **Continued Pretraining:** Enhances the model's ability to adapt to a wide range of languages. - **LoRA Low-Rank Adaptation:** LoRA low-rank adaptation refines the model's adaptation capabilities. - **Vocabulary Extension:** MaLA-500 boasts an extended vocabulary size of 260,164. - **Multilingual Proficiency:** Trained on Glot500-c, covering 534 languages. ## How to Get Started with the Model Requirements: ``` transformers>=4.36.1 peft>=0.6.2 ``` Use the code below to get started with the model. ``` python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf') base_model.resize_token_embeddings(260164) tokenizer = AutoTokenizer.from_pretrained('MaLA-LM/mala-500') model = PeftModel.from_pretrained(base_model, 'MaLA-LM/mala-500') ``` ## Citation ``` @misc{lin2024mala500, title={MaLA-500: Massive Language Adaptation of Large Language Models}, author={Peiqin Lin and Shaoxiong Ji and Jörg Tiedemann and André F. T. Martins and Hinrich Schütze}, year={2024}, eprint={2401.13303}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```