--- language: - en pipeline_tag: text2text-generation metrics: - f1 tags: - grammatical error correction - GEC - english --- This is a fine-tuned version of LLAMA2 trained (7b) on spider, sql-create-context. To initialize the model: #from transformers import MBartForConditionalGeneration, MBart50TokenizerFast #model = MBartForConditionalGeneration.from_pretrained("MRNH/mbart-english-grammar-corrector") Use the tokenizer: #tokenizer = MBart50TokenizerFast.from_pretrained("MRNH/mbart-english-grammar-corrector", src_lang="en_XX", tgt_lang="en_XX") #input = tokenizer("I was here yesterday to studying", # text_target="I was here yesterday to study", return_tensors='pt') To generate text using the model: #output = model.generate(input["input_ids"],attention_mask=input["attention_mask"], # forced_bos_token_id=tokenizer_it.lang_code_to_id["en_XX"]) Training of the model is performed using the following loss computation based on the hidden state output h: #h.logits, h.loss = model(input_ids=input["input_ids"], # attention_mask=input["attention_mask"], # labels=input["labels"])