--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: AraBERT_token_classification_no_merge results: [] --- # AraBERT_token_classification_no_merge This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4408 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.6786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 27 | 1.4727 | 0.0 | 0.0 | 0.0 | 0.6786 | | No log | 2.0 | 54 | 1.4639 | 0.0 | 0.0 | 0.0 | 0.6786 | | No log | 3.0 | 81 | 1.4707 | 0.0 | 0.0 | 0.0 | 0.6786 | | No log | 4.0 | 108 | 1.4494 | 0.0 | 0.0 | 0.0 | 0.6786 | | No log | 5.0 | 135 | 1.4408 | 0.0 | 0.0 | 0.0 | 0.6786 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.2 - Tokenizers 0.13.3