--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: AraBERT_token_classification__AraEval24_trun_concat results: [] --- # AraBERT_token_classification__AraEval24_trun_concat This model is a fine-tuned version of [aubmindlab/bert-base-arabert](https://huggingface.co/aubmindlab/bert-base-arabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3885 - Precision: 0.0303 - Recall: 0.0554 - F1: 0.0392 - Accuracy: 0.6335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 268 | 0.9800 | 0.0034 | 0.0002 | 0.0005 | 0.8620 | | 1.5757 | 2.0 | 536 | 0.9902 | 0.0222 | 0.0176 | 0.0196 | 0.8193 | | 1.5757 | 3.0 | 804 | 1.0814 | 0.0194 | 0.0282 | 0.0230 | 0.7296 | | 1.1715 | 4.0 | 1072 | 1.2076 | 0.0216 | 0.0386 | 0.0277 | 0.6544 | | 1.1715 | 5.0 | 1340 | 1.2372 | 0.0313 | 0.0645 | 0.0422 | 0.6457 | | 0.9092 | 6.0 | 1608 | 1.2709 | 0.0303 | 0.0579 | 0.0397 | 0.6474 | | 0.9092 | 7.0 | 1876 | 1.3102 | 0.0303 | 0.0575 | 0.0397 | 0.6427 | | 0.7262 | 8.0 | 2144 | 1.3638 | 0.0290 | 0.0537 | 0.0376 | 0.6311 | | 0.7262 | 9.0 | 2412 | 1.4512 | 0.0290 | 0.0561 | 0.0383 | 0.6109 | | 0.635 | 10.0 | 2680 | 1.3885 | 0.0303 | 0.0554 | 0.0392 | 0.6335 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1 - Datasets 2.13.2 - Tokenizers 0.13.3